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Introduction (1)

Context

I The 1-year creatinine clearance (CrCl) is today an accepted
surrogate marker of the long-term evolution of kidney transplant
recipient.

I The CrCl is used in many protocols of clinical research as the
principal outcome.

I Problem: Based on the usual receiver operating characteristic
(ROC) curves, Kaplan et al. [1] demonstrated that the CrCl does
not constitute a good predictive marker.

Two methodological issues of using the usual ROC curves

I Three possible prognostics: the death, the return in dialysis and
the functional graft.

I The longitudinal data can be incomplete with right-censoring
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Introduction (2)

Recent developments

I ROC curves for a diagnostic with more than 2 classes:
I Mossman [2], Heckerling [3] and He et al. [4]

I The time-dependant ROC theory in the context of survival data:
I Heagerty et al. [5, 6, 7]

Objective

I To adapt the ROC approach to a three-class prognostic with
censoring data

I To evaluate the predictive capacity of the 1-year CrCl to predict
the long-term evolution
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The multi-state process (1)

Notations

I Two competitive failures X (X = {1, 2})
I Let T be the failure time of the first event

I Y the marker value at the origin of the follow-up (Y ∈ <)
I Pi denotes the probability that the first failure is i

I Since i = 1, 2, then P1 = 1− P2 ∈ [0, 1]
I Logistic function: P1 = exp(α)/{1 + exp(α)}, ∀α ∈ <

I According to the semi-markovian property [8], Si (t) is the specific
survival function of the failure i

I Si (t) = P(T > t |X = i)

I Proportional hazard assumption: Si (t |Zi ) = S0i (t)exp(Zi )

I S0i (t) is the baseline survival function specific to the failure i
I βi is the regression parameter associated with the failure i
I Zi = βi Y is the score of risk associated with the marker Y and the

failure i
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The multi-state process (2)

Estimation

I The log likelihood is defined by:

NX
j=1

n 2X
i=1

δij

n
log(Pi ) + log(λ0i (tj )) + zij − exp(zij )Λ0i (tj )

o

+
“

1−
2X

i=1

δij

”
log
“ 2X

i=1

PiS0i (tj )exp(zij )
”o

I δij = 1 if the end of the follow-up consists of failure i for the
subject j and 0 otherwise.

I λ0i is the baseline hazard function corresponding to S0i

I Λ0i (t) =
R t

0 λ0i (u)du
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Evaluations of the prognostic performances (1)

Suppose that {Zi > ciτ} corresponds to the subgroup at risk of failure
i before the time τ

The sensitivity (se) of Zi for the prediction of the failure i

sei (ciτ |τ) = P(zi > ciτ |T ≤ τ,X = i)

= P(zi > ciτ ,T ≤ τ |X = i)/P(T ≤ τ |X = i)

=

Z ∞
ciτ

(1− Si (τ |zi ))g(zi )dzi

ffiZ ∞
−∞

(1− Si (τ |zi ))g(zi )dzi

where g(zi ) is the probability density function of the score zi .



Time-dependent
ROC analysis for a

three-class
prognostic

Y. Foucher, M. Giral,
JP. Soulillou,
JP. Daures

Introduction

Methods

The multi-state process

Evaluations of the
prognostic performances

Analysis of kidney
transplant recipients

Kidney transplant data

Modelling assumptions

Results

Discussion

Evaluations of the prognostic performances (2)

The se of Zi (i = 1, 2) for the prediction of one of both failures

Let cτ = (c1τ , c2τ ), A = {z1 ≤ c1τ , z2 ≤ c2τ} and A is not A

se(cτ |τ) = P(A|T ≤ τ)

= P(A,T ≤ τ)/P(T ≤ τ)

= 1− P(A,T ≤ τ)/P(T ≤ τ)

Total Probability Theorem

se(cτ |τ) = 1−
˘ 2X

i=1

Pi P(A,T ≤ τ |X = i)
¯‹˘ 2X

i=1

Pi P(T ≤ τ |X = i)
¯

If γ = β2/β1 is positive, then:

se(cτ |τ) = 1−
˘ 2X

i=1

Pi

Z ωi

−∞
(1− Si (τ |zi ))g(zi )dzi

¯
×

˘ 2X
i=1

Pi

Z ∞
−∞

(1− Si (τ |zi ))g(zi )dzi
¯−1

where ω1 = min(c1τ , γ
−1c2τ ) et ω2 = min(γc1τ , c2τ ).
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Evaluations of the prognostic performances (3)

The specificity (sp) of Zi for the prediction of no failure i

spi (ciτ |τ) =

Z ciτ

−∞
Si (τ |zi )g(zi )dzi

ffiZ ∞
−∞

Si (τ |zi )g(zi )dzi

The sp of Zi (i = 1, 2) for the prediction of no failure

sp(cτ |τ) =

 2X
i=1

Pi

Z ωi

−∞
Si (τ |zi )g(zi )dzi

ffffi 2X
i=1

Pi

Z ∞
−∞

Si (τ |zi )g(zi )dzi

ff

=⇒ ROCi (τ), ROC(τ)

=⇒ AUCi (τ), AUC(τ)
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Evaluations of the prognostic performances (4)

Determination of the optimal cutpoints of Zi (i = 1, 2)

I The optimal cutpoints minimize the cost function, denoted C(cτ , τ).
I Proportional to the number of false positive (FP) and negative (FN) for a

prognostic at time τ using the cutpoints cτ
I Let φp and φn be the weights associated respectively with FP and FN

I Let φi be the weight of errors associated with the prognostic of Xi

C(cτ , τ) ∝ φp


φ1

„
P1

Z ∞
c1τ

S1(τ |z1)g(z1)dz1 + P2

Z ∞
γc1τ

S2(τ |z2)g(z2)dz2

«
+ φ2

„
P1

Z ∞
c2τ/γ

S1(τ |z1)g(z1)dz1 + P2

Z ∞
c2τ

S2(τ |z2)g(z2)dz2

«ff

+ φn

 2X
i=1

φi Pi

Z ciτ

−∞
(1− Si (τ |zi ))g(zi )dzi

ff
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Analysis of kidney transplant recipients (1)

Kidney transplant data

I What is the capacity of the 1-year CrCl to predict the evolution of kidney
transplant recipients until the 10th anniversary of transplantation?

I The origin of the follow-up (t = 0) is the first anniversary of transplantation

I The prognostic time τ is equal to 9 years

I At any time, a patient can occupy one of the following three states:
I Stable with a functional kidney
I Returned to dialysis (X = 1)
I Died with a functional kidney (X = 2).

I Prospective study of kidney transplant recipients (DIVAT)

I 2635 patients of more than 18 years of age and who received a kidney
graft between January 1996 and September 2006

I 215 patients returned to dialysis and 95 died with a functional kidney
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Analysis of kidney transplant recipients (2)

Modelling the survival part

I Generalized Weibull distribution of the baseline survival functions
I S0i (t) = exp(1− (1 + ( t

σi
)νi )θ

−1
i ) ∀ νi , σi , θi > 0

I if θi = 1, the Weibull distribution is obtained
I and if νi = 1, the Exponential distribution is obtained

The marker distribution

I The distributions of the scores do not comply with any classic
parametric law

I We use a Gaussian kernel density estimator with 1000 points
(density function in R)

Computing details

I The analysis are realized with R

I The integral calculations are based on trapezoidal rule



Time-dependent
ROC analysis for a

three-class
prognostic

Y. Foucher, M. Giral,
JP. Soulillou,
JP. Daures

Introduction

Methods

The multi-state process

Evaluations of the
prognostic performances

Analysis of kidney
transplant recipients

Kidney transplant data

Modelling assumptions

Results

Discussion

Analysis of kidney transplant recipients (3)

Determination of the weights: φp and φn

I The simplest solution is to suppose that φp = φn

I irrespective of the intended application

I The priority of clinicians is to minimize the number of FN: φp < φn

I But, the majority of patients did not suffer any failure and the
minimization of the total number of errors privileges the
minimization of FP

I Since it is difficult for clinicians to precisely define both weights,
we attribute greater importance of the false negatives according
to the low frequency of observed failures:

φn = 1− φp = P(T > τ) =
2X

i=1

Pi

Z ∞
−∞

Si (τ |zi )g(zi )dzi
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Analysis of kidney transplant recipients (4)

Determination of the weights: φ1 and φ2

I The simplest solution is to suppose that φ1 = φ2

I irrespective of the intended application

I Death with a functional kidney is often due to a cause
independent of the transplantation

I CrCl is a marker of the kidney activity and more predictive of a
return in dialysis

I It is therefore more serious to not prognosticate return to dialysis
than not prognosticate death

I The cost of an error associated with a certain failure is
proportional to the accuracy of the marker to predict this failure

φi = AUCi (τ) (i = 1, 2)
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Analysis of kidney transplant recipients (5)

The multi-state model

Parameters Estimations Standard Deviations p-values∗

α 0.41 0.59 .
σ1 2.31 0.69 .
ν1 1.30 0.08 .
σ2 18.35 9.33 .
β1 -0.06 0.01 <0.0001
β2 -0.02 0.01 0.0075
∗ Null hypothesis: the parameter is null (Wald test)

Table: Parameters of the semi-markovian model (logV = −1505.13)

I The flexibility of the generalized Weibull distribution is useless

I Weibull for the times until a return to dialysis
I Exponential for the time until a death

I For returns in dialysis, an increase of 10 ml/min divides the risk by 1.8

I For deaths, an increase of 10 ml/min divides the risk by 1.2

I The estimated probability of returning to dialysis before dying equals 0.6

I 40% of the patients are expected to die with a functional kidney
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Analysis of kidney transplant recipients (6)

Prognostic performances (1)
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Marginal ROC(9) curve
ROC(9) curve for X=1
ROC(9) curve for X=2

I AUC1(9) = 0.81
I IC95% = [0.75, 0.85]

I AUC2(9) = 0.62
I IC95% = [0.55, 0.69]

I AUC(9) = 0.75
I IC95% = [0.71, 0.78]
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Analysis of kidney transplant recipients (7)

Prognostic performances (2)
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Discussion

I We proposed a method for a three-class and time-dependant
ROC analysis

I We also proposed a cost function to calculate the optimal
cutpoints

I The developments are based on the real problematic of the medical
decision-making (definition of weights)

I It can be difficult for experts to precisely define these weights
according to the different kinds of errors

I A solution is to grant the same importance to all errors
I This solution is only useful from a statistical point of view

(minimisation of the total numbre of errors)

I Adaptations can be proposed to this background methodology
I Modelling the survival part: non-parametric model, competitive risk

approach, accelerated failure time assumption...
I The score can take into account more than one marker
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