The modeling of the evolution of kidney transplant recipients
Applications to the DIVAT cohort

Y. Foucher

Yohann.Foucher@univ-nantes.fr

Departement of Biomathematics and Biostatistics (EA 4275), Faculty of Medical Sciences, University of Nantes & ITERT and INSERM U643, Nantes Hospital, France

ISCB - Montpellier 2009
The modeling of the evolution of kidney transplant recipients

Y. Foucher

Outline

Introduction
 Context and objectives
 Cox-based results

The relative survival
 Methods
 Results
 Discussions

The semi-Markov model (SMM)
 Methods
 Results
 Discussions

The relative semi-Markov model (R-SMM)
 Methods
 Results
 Discussions

References

Collaborations
Outline

Introduction

Context and objectives
Cox-based results

The relative survival

Methods
Results
Discussions

The semi-Markov model (SMM)

Methods
Results
Discussions

The relative semi-Markov model (R-SMM)

Methods
Results
Discussions

References

Collaborations
What is the terminal renal insufficiency?

- The chronic kidney disease is a reduction in the renal function.
- The end-stage is the terminal renal insufficiency.
- Two possible treatments:
 - Dialysis (hemodialysis or peritoneal dialysis)
 - Kidney transplantation
- The kidney transplantation is the preferred treatment regarding:
 - The quality of life
 - The long term survival
- The cost of a patient with a functional transplant is significantly lower in comparison with a patient treated by dialysis.
Objectives of clinical research

- To increase the kidney graft survival.
- A lot of papers are devoted to the analysis of the survival:
 - 21997 papers are referenced in PubMed with the keywords: survival + kidney + transplantation.

Problem

- The evolution of the transplanted patient is complex:
 - The acute rejection of the transplant
 - The return in dialysis (definitive rejection)
 - The death with a functional kidney
- Usual survival model may be not adapted.
- The Cox model is used to analyze a single time-to-event.
Guidelines for survival analysis in kidney transplantation

- Two Cox models are recommended for a single paper:
 1. **Graft survival**: time between the transplantation and the return in dialysis (death-censored approach).
 2. **Graft-Patient survival**: time between the transplantation and the first graft failure (return in dialysis or the death with a functional kidney)

- The acute rejection is analyzed as a time-dependent covariate.

Assumptions of these models

1. All the deaths are considered independent from the transplant.
 - False: Infections due to the post-operative complications.
2. All the deaths are considered related to the transplantation.
 - False: Car crash.
DIVAT = Données Informatisées et VAlidées en Transplantation.

Multicentric cohort with 5 French hospitals

Inclusion criteria:
 - Age at the graft \geq 18 years
 - Only cadaveric donors
 - First and second transplantations

$\Rightarrow N = 4280$ individuals were included.
Cox-based results (2)

<table>
<thead>
<tr>
<th>Hazard Ratio (p-value)</th>
<th>Patient/graft survival</th>
<th>Graft survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recipient age (> 55 vs ≤ 55 years)</td>
<td>1.58 (0.0001)</td>
<td>1.17 (0.1832)</td>
</tr>
<tr>
<td>Donor age (> 55 vs ≤ 55 years)</td>
<td>1.52 (0.0001)</td>
<td>1.40 (0.0055)</td>
</tr>
<tr>
<td>Cold ischemia time (>36 vs ≤ 36 hours) †</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before 7 years of transplantation</td>
<td>1.14 (0.3895)</td>
<td>0.98 (0.9224)</td>
</tr>
<tr>
<td>After 7 years of transplantation</td>
<td>1.83 (0.0181)</td>
<td>2.68 (0.0011)</td>
</tr>
<tr>
<td>Recipient gender (male vs female)</td>
<td>0.94 (0.4512)</td>
<td>0.78 (0.0172)</td>
</tr>
<tr>
<td>Post-graft dialysis (yes vs no)</td>
<td>1.76 (0.0001)</td>
<td>1.88 (0.0001)</td>
</tr>
<tr>
<td>Acute rejection episode (yes vs no) †</td>
<td>1.76 (0.0001)</td>
<td>2.44 (0.0001)</td>
</tr>
</tbody>
</table>

◊ Included as a time dependant covariate.

† Because the proportionality of hazard is not respected for the cold ischemia time and for the analysis of graft survival (death-censored).

Table – Multivariate results of the three survival regressions.
Limitations of the approach

- Multiple models to analyze the kidney transplant recipients evolution.
- Necessity of a subjective interpretation to synthetize the results.
- Dependence of the censoring process and the time-to-event in the death-censored model.
- The acute rejection is an important step in the evolution of the disease
 - The evolution is different before and after this event.
 - What are the covariates associated with this event?
Cox-based results (4)

What about the use of a cause-specific model?

- The deaths not related to the transplantation are considered as right-censoring.
- The causality of the deaths is often unknown.
- For instance, a cancer can be due to:
 1. The immunosuppressive drugs after transplantation.
 2. Other risk factors (smoke, heredity, etc.).

<table>
<thead>
<tr>
<th>Cause</th>
<th>Effectives</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer</td>
<td>46</td>
<td>20.2%</td>
</tr>
<tr>
<td>Cardio-vascular cause</td>
<td>42</td>
<td>18.4%</td>
</tr>
<tr>
<td>Cerebro-vascular cause</td>
<td>12</td>
<td>5.3%</td>
</tr>
<tr>
<td>Gastro-intestinal cause</td>
<td>10</td>
<td>4.4%</td>
</tr>
<tr>
<td>Haemorrhage</td>
<td>18</td>
<td>7.9%</td>
</tr>
<tr>
<td>Infection</td>
<td>30</td>
<td>13.2%</td>
</tr>
<tr>
<td>Others</td>
<td>36</td>
<td>15.8%</td>
</tr>
<tr>
<td>Unknown/Missing</td>
<td>34</td>
<td>14.8%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>228</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Table - Details about the cause of the 228 observed deaths
The modeling of the evolution of kidney transplant recipients

Y. Foucher

Outline

Introduction
 Context and objectives
 Cox-based results

The relative survival
 Methods
 Results
 Discussions

The semi-Markov model (SMM)
 Methods
 Results
 Discussions

The relative semi-Markov model (R-SMM)
 Methods
 Results
 Discussions

References

Collaborations
Principle of the method (1)

- The traditional additive relative survival models:

\[
\text{Global mortality (all the observed deaths)} - \text{Expected mortality (population life-tables)} = \text{Transplantation related mortality}
\]
The modeling of the evolution of kidney transplant recipients

Y. Foucher

Introduction

Context and objectives

Cox-based results

The relative survival

Methods

Results

Discussions

The semi-Markov model (SMM)

Methods

Results

Discussions

The relative semi-Markov model (R-SMM)

Methods

Results

Discussions

References

Collaborations

Principle of the method (2)

The adaptation in kidney transplantation:

- Observed graft-failures:
 - Returns in dialysis + All deaths

- Statistical computation:
 - Returns in dialysis + All deaths - Expected mortality

- Studied graft-failures:
 - Returns in dialysis + Deaths related to transplantation
Definition of the model (1)

- Let t the time between the transplantation and the first failure (death or return in dialysis)

\[\lambda_{ob}(t) = \lambda^*(t) + \lambda_{re}(t) \]

- $\lambda_{ob}(t)$ is the observed hazard function.
 - This is the global hazard of the observed cohort of patients.
 - All the observed failures are taking into account.

- $\lambda^*(t)$ is the expected hazard.
 - This hazard is given by lifetime tables of the reference population.
 - Its value is not estimated.

- $\lambda_{re}(t)$ is the hazard related to the disease.
 - This hazard is indirectly estimated from the observed and the expected hazard.
 - Its represents the excess of risk of the studied cohort compared to the reference population.
Definition of the model (2)

\[
\lambda_{ob}(t) = \lambda^*(t) + \lambda_{re}(t)
\]
\[\iff\]
\[
\Lambda_{ob}(t) = \Lambda^*(t) + \Lambda_{re}(t)
\]
\[\iff\]
\[
S_{ob}(t) = S^*(t) \times S_{re}(t)
\]

- Interpretation: The relative survival is the proportion of patients who have survived until time \(t\), if the disease would be the unique cause of failure.

- Introduction of covariates:

\[
\lambda_{ob}(t, z) = \lambda^*(t, z^*) + \lambda_{re}(t, z_{re})
\]

- \(z\) represents all the covariates taking into account in the model.
- \(z^*\) are the covariates associated with the expected failure rate.
- \(z_{re}\) are the factors associated with the relative risk of failure.
The model of Esteve (1)

- Esteve proposed a proportional hazard approach [2]:

\[
\lambda_{re}(t, z_{re}) = \exp\left(\sum_{k=1}^{m} \kappa_k 1_{\tau_{k-1} \leq t < \tau_k}\right) \exp\left(\sum_{j=1}^{p} \beta_j z_{re,j}\right)
\]

- The baseline hazard function is a step function respecting the \(m\) intervals \([\tau_0, \tau_1[, [\tau_1, \tau_2[, \ldots, [\tau_{m-1}, \tau_m[\).
- \(\beta_j\) are the regression parameters associated with the \(j\)th covariate \(z_{re,j}\) (\(j = 1, 2, \ldots, p\)).
- Interpretation: \(HR_{z_{re,j}=1/0} = \exp(\beta_j)\). The group \(z_{re,j} = 1\) has \(\exp(\beta_j)\) more times risk to fail due to the disease compared to the group \(z_{re,j} = 0\).
The model of Esteve (2)

- Let a sample of \(N \) patients (\(i=1,2,..., N \)).
- \(t_i \) is the time-to-failure for the \(i \)th patient with \(\delta_i = 1 \) if he/she has failed and 0 otherwise.
- \(z_i \) is the observed vector of all covariates for the \(i \)th patient.
 - \(z_i^* \) for the variables associated with the expected survival.
 - \(z_{re,i} \) for the variables associated with the transplant-related survival.
- The logLikelihood:

\[
\log \ell = \sum_{i=1}^{N} \delta_i \log \left(\lambda_{ob}(t_i, z_i) \right) - \Lambda_{ob}(t_i, z_i)
\]

\[\iff\]

\[
\log \ell = \sum_{i=1}^{N} \delta_i \log(\lambda^*(t_i, z_i^*) + \lambda_{re}(t_i, z_{re,i})) - \Lambda^*(t_i, z_i^*) - \Lambda_{re}\left(t_i, z_{re,i}\right)
\]

- \(\lambda^*(t_i, z_i^*) \) is obtained from lifetime tables
- \(\Lambda^*(t_i, z_i^*) = \sum_{u=0}^{t_i} \lambda^*(u, z_i^*) \)
Application to DIVAT (1)

- We performed the analysis on the same sample used in the introduction
 - Age at the graft ≥ 18 years
 - Only cadaveric donors
 - First and second transplantations
 - \(N = 4280 \) individuals were included

- We used the French lifetime tables to take into account the expected mortality according to age, gender and birthdates [6].
 - http://www.ined.fr/cdrom_vallin_mesle/contenu.htm

- The results were compared with both usual Cox models
The modeling of the evolution of kidney transplant recipients

Y. Foucher

Introduction

Context and objectives

Cox-based results

The relative survival

Methods

Results

Discussions

The semi-Markov model (SMM)

Methods

Results

Discussions

The relative semi-Markov model (R-SMM)

Methods

Results

Discussions

References

Collaborations

Application to DIVAT (2)

<table>
<thead>
<tr>
<th>Hazard Ratio (p-value)</th>
<th>Patient/graft survival</th>
<th>Graft survival</th>
<th>Relative survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recipient age (> 55 vs ≤ 55 years)</td>
<td>1.58 (0.0001)</td>
<td>1.17 (0.1832)</td>
<td>1.38 (0.0041)</td>
</tr>
<tr>
<td>Donor age (> 55 vs ≤ 55 years)</td>
<td>1.52 (0.0001)</td>
<td>1.40 (0.0055)</td>
<td>1.53 (0.0001)</td>
</tr>
<tr>
<td>Cold ischemia time (>36 vs ≤ 36 hours)†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before 7 years of transplantation</td>
<td>1.14 (0.3895)</td>
<td>0.98 (0.9224)</td>
<td>1.19 (0.3002)</td>
</tr>
<tr>
<td>After 7 years of transplantation</td>
<td>1.83 (0.0181)</td>
<td>2.68 (0.0011)</td>
<td>1.79 (0.0371)</td>
</tr>
<tr>
<td>Recipient gender (male vs female)</td>
<td>0.94 (0.4512)</td>
<td>0.78 (0.0172)</td>
<td>0.82 (0.0367)</td>
</tr>
<tr>
<td>Post-graft dialysis (yes vs no)</td>
<td>1.76 (0.0001)</td>
<td>1.88 (0.0001)</td>
<td>1.89 (0.0001)</td>
</tr>
<tr>
<td>Acute rejection episode (yes vs no)‡</td>
<td>1.76 (0.0001)</td>
<td>2.44 (0.0001)</td>
<td>1.94 (0.0001)</td>
</tr>
</tbody>
</table>

† Included as a time dependant covariate.
‡ Because the proportionality of hazard is not respected for the cold ischemia time and for the analysis of graft survival (death-censored), the time dependent relationship is taken into account. The corresponding hazard ratio just concerns individuals after 7 years of transplantation.

Table – Multivariate results of the three survival regressions.
Conclusions and advantages of this approach

- The relative survival model can be used when cause-specific models are not adapted.
- The relative survival model is an objective synthesis between both usual models (graft or graft-patient survival).
- The interpretation of the model is simple (hazard ratio).
- Reduction of the heterogeneity between countries (the background mortality is removed).
The baseline hazard function is a piecewise function.
 - Giorgi et al. have proposed to use splines [5].
 - Lambert et al. have proposed to use fractional polynomials [3].
 - Pohar et al. proposed an EM algorithm in order to avoid the estimation of the baseline hazard function [4].

The effects of covariates are estimated regardless the type of failure: death or return in dialysis.

The acute rejection is analyzed as a covariate.

The reference population is the general population. However, a patient without kidney transplant is under dialysis.
The modeling of the evolution of kidney transplant recipients

Y. Foucher

Outline

Introduction
 Context and objectives
 Cox-based results

The relative survival
 Methods
 Results
 Discussions

The semi-Markov model (SMM)
 Methods
 Results
 Discussions

The relative semi-Markov model (R-SMM)
 Methods
 Results
 Discussions

References

Collaborations
Definition of the multistate structure

STATE #1
Functional graft

STATE #2
Graft with acute rejection

STATE #3
RETURN IN DIALYSIS

STATE #4
DEATH WITH A FUNCTIONAL KIDNEY

Not persistent state

Persistent state

Transition
SMM framework (1)

- Let the sample of size \(N, h = 1, \ldots, N \).
- Let \(X_h = \{X_{h,r}, r = 0, \ldots, m_h\} \) the sequence of distinct states observed for \(h \)th individual.
 - The first state is the state #1, \(X_{h,1} = 1 \).
 - \(m_h \) is the number of transitions for the \(h \)th individual.
 - This sequence can be equal to: \(\{1\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 2, 3\} \), or \(\{1, 2, 4\} \).
- Let \(D_{h,r} \) the time spend in the state \(X_{h,r} \).
SMM framework (2)

\[P(D_{h,r} \leq x, X_{h,r+1} = j | X_{h,0}, D_{h,0}, \ldots, X_{h,r} = i) \]
The modeling of the evolution of kidney transplant recipients

Y. Foucher

Introduction
Context and objectives
Cox-based results
The relative survival
Methods
Results
Discussions
The semi-Markov model (SMM)
Methods
Results
Discussions
The relative semi-Markov model (R-SMM)
Methods
Results
Discussions
References
Collaborations

SMM framework (2)

\[P(D_{h,r} \leq x, X_{h,r+1} = j | X_{h,0}, D_{h,0}, \ldots, X_{h,r} = i) \]

\[P(D_{h,r} \leq x, X_{h,r+1} = j | X_{h,r} = i) \]

Semi-Markov property
SMM framework (2)

\[P(D_{h,r} \leq x, X_{h,r+1} = j | X_{h,0}, D_{h,0}, \ldots, X_{h,r} = i) \]

\[\downarrow \]

Semi-Markov property

\[P(D_{h,r} \leq x, X_{h,r+1} = j | X_{h,r} = i) \]

\[P(A, B) = P(A|B)P(B) \]

\[P(X_{h,r+1} = j | X_{h,r} = i) \times P(D_{h,r} \leq x | X_{h,r+1} = j, X_{h,r} = i) \]
SMM framework (2)

\[P(D_{h,r} \leq x, X_{h,r+1} = j | X_{h,0}, D_{h,0}, \ldots, X_{h,r} = i) \]

Semi-Markov property

\[P(D_{h,r} \leq x, X_{h,r+1} = j | X_{h,r} = i) \]

\[P(A, B) = P(A|B)P(B) \]

\[P(X_{h,r+1} = j | X_{h,r} = i) \times P(D_{h,r} \leq x | X_{h,r+1} = j, X_{h,r} = i) \]

\[P_{ij} : Trajectory \]
SMM framework (2)

\[P(D_{h,r} \leq x, X_{h,r+1} = j | X_{h,0}, D_{h,0}, \ldots, X_{h,r} = i) \]

\[\text{Semi-Markov property} \]

\[P(D_{h,r} \leq x, X_{h,r+1} = j | X_{h,r} = i) \]

\[P(A, B) = P(A|B)P(B) \]

\[P(X_{h,r+1} = j | X_{h,r} = i) \times P(D_{h,r} \leq x | X_{h,r+1} = j, X_{h,r} = i) \]

\[P_{ij} : \text{Trajectory} \quad F_{ij}(x) : \text{Waiting time distribution} \]
SMM framework (3)

Embedded Markov chain (trajectories)

\[P_{ij} = P(X_{h,r+1} = j \mid X_{h,r} = i) \]

- If state \(i \) is not persistent then \(P_{ij} \geq 0 \) and \(P_{ii} = 0 \).
- If state \(i \) is persistent then \(P_{ij} = 0 \) and \(P_{ii} = 1 \).
SMM framework (3)

Embedded Markov chain (trajectories)

\[
P_{ij} = P(X_{h,r+1} = j | X_{h,r} = i)
\]

- If state \(i\) is not persistent then \(P_{ij} \geq 0\) and \(P_{ii} = 0\).
- If state \(i\) is persistent then \(P_{ij} = 0\) and \(P_{ii} = 1\).

Distribution of waiting times

\[
F_{ij}(d) = P(D_{h,r} \leq d | X_{h,r+1} = j, X_{h,r} = i)
\]

- The hazard function: \(\lambda_{ij}(d)\)
- The cumulative hazard function: \(\Lambda_{ij}(d) = \int_0^d \lambda_{ij}(u)du\)
- The survival function: \(S_{ij}(d) = 1 - F_{ij}(d) = \exp(-\Lambda_{ij}(d))\)
- The density probability function: \(f_{ij}(d) = \lambda_{ij}(d)S_{ij}(d)\)
Likelihood estimation (1)

Case #1: $X_h = \{1, k\} \forall k = 3, 4$

\[\ell_{h,1} = \lim_{d \to 0} \left\{ P(d_{h,0} < D_{h,0} < d_{h,0} + d, X_{h,1} = k) \right\} \]

\[= P(X_{h,1} = k | X_{h,0} = 1) \lim_{d \to 0} \left\{ P(d_{h,0} < D_{h,0} < d_{h,0} + d | X_{h,1} = k) \right\} \]

\[\ell_{h,1} = P_{1k} f_{1k}(d_{h,0}) \]
Likelihood estimation (2)

- Case #2: $X_h = \{1, 2, k\}$ $\forall k = 3, 4$

$$\ell_{h,2} = \lim_{d \to 0} \left\{ P(d_{h,0} < D_{h,0} < d_{h,0} + d, X_{h,1} = 2, d_{h,1} < D_{h,1} < d_{h,1} + d, X_{h,2} = k) \right\}$$

$$= \lim_{d \to 0} \left\{ P(d_{h,0} < D_{h,0} < d_{h,0} + d, X_{h,1} = 2) \times P(d_{h,1} < D_{h,1} < d_{h,1} + d, X_{h,2} = k | X_{h,1} = 2) \right\}$$

$$\ell_{h,2} = P_{12} f_{12}(d_{h,0}) \times P_{2k} f_{2k}(d_{h,1})$$
Parameterization of the SMM (1)

Proportional hazard assumption

- Let \(Z_{ij} \) the transition-specific vector of covariates \((\forall ij = 12, 13, 14, 23, 24)\).
- Let \(\beta_{ij} \) the vector of regression parameters associated with \(Z_{ij} \).
 \[
 \lambda_{ij}(d, z_{ij}) = \lambda_{0,ij}(d) \exp(\beta_{ij} z_{ij})
 \]
- \(\lambda_{0,ij}() \) is the baseline hazard function of the transition \(ij \).
- \(HR_{ij} = \exp(\beta_{ij}) \) represents the hazard ratio of the transition \(ij \).
- Interpretation: The group \(Z_{ij} = 1 \) has \(HR_{ij} \) times more risk to jump from the state \(i \), given that the following state is \(j \).
Parameterization of the SMM (2)

Parametric baseline hazard function

► We used the generalized Weibull distribution:

$$\lambda_{0,ij}(d) = \frac{1}{\theta} \left(1 + \left(\frac{d}{\sigma} \right)^{\nu} \right)^{(1/\theta)-1} \frac{\nu}{\sigma} \left(\frac{d}{\sigma} \right)^{\nu-1}$$

with θ, ν and $\sigma > 0$.

► Hazard functions can be \cup – or \cap – shaped.

► If $\theta = 1$, we obtain the Weibull distribution.

► If $\theta = \nu = 1$, we obtain the Exponential distribution.

► The Likelihood Ratio Statistic can be used.
Parameterization of the SMM (3)

Multinomial logistic regression to model P_{ij}

\[
P_{ij} = \frac{\exp(\alpha_{1j})}{\sum_{k=2}^{4} \exp(\alpha_{1k})} \quad \forall \alpha_{12}, \alpha_{13}, \alpha_{14} \in \mathbb{R}
\]

- $\sum_{k=2}^{4} P_{1k} = 1$
- We assumed by convention that $\alpha_{12} = 0$

\[
P_{2j} = \frac{\exp(\alpha_{2j})}{\exp(\alpha_{23}) + \exp(\alpha_{24})} \quad \forall \alpha_{23}, \alpha_{24} \in \mathbb{R}
\]

- $P_{23} + P_{14} = 1$
- We assumed by convention that $\alpha_{23} = 0$
Application to DIVAT (1)

Inclusion criteria

- In order to obtain a homogeneous sample:
 - Transplantations after the 1st January 1996.
 - Age at the graft ≥ 18 years.
 - Only cadaveric donors.
 - First transplantations.

- In order to compare the results with the next relative Semi-Markov model:
 - Less than 5 years in dialysis before the graft.
 - With at least one pre-graft dialysis.
 - End of follow-up at 5 years after the first dialysis.

⇒ $N = 2245$ individuals were included.
Application to DIVAT (2)

Description of the trajectories

The modeling of the evolution of kidney transplant recipients
Y. Foucher

Introduction
Context and objectives
Cox-based results
The relative survival
Methods
Results
Discussions
The semi-Markov model (SMM)
Methods
Results
Discussions
The relative semi-Markov model (R-SMM)
Methods
Results
Discussions
References
Collaborations

<table>
<thead>
<tr>
<th>Trajectory</th>
<th>Effective</th>
<th>Percent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_h = {1}$*</td>
<td>1636</td>
<td>72.9%</td>
</tr>
<tr>
<td>$X_h = {1, 2}$*</td>
<td>373</td>
<td>16.6%</td>
</tr>
<tr>
<td>$X_h = {1, 3}$</td>
<td>107</td>
<td>4.8%</td>
</tr>
<tr>
<td>$X_h = {1, 4}$</td>
<td>79</td>
<td>3.5%</td>
</tr>
<tr>
<td>$X_h = {1, 2, 3}$</td>
<td>39</td>
<td>1.7%</td>
</tr>
<tr>
<td>$X_h = {1, 2, 4}$</td>
<td>11</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

* Right-censoring trajectories.
Application to DIVAT (3)

Multivariate Semi-Markov model

- $\ell = -1532.682$

- Parameters associated with the baseline hazard functions and the multinomial logistic regressions:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Estimation</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log(\sigma_{12})$</td>
<td>-4.12</td>
<td>0.08</td>
</tr>
<tr>
<td>$\log(\nu_{12})$</td>
<td>1.88</td>
<td>0.27</td>
</tr>
<tr>
<td>$\log(\theta_{12})$</td>
<td>3.52</td>
<td>0.35</td>
</tr>
<tr>
<td>$\log(\sigma_{13})$</td>
<td>-5.95</td>
<td>0.00</td>
</tr>
<tr>
<td>$\log(\nu_{13})$</td>
<td>4.54</td>
<td>0.00</td>
</tr>
<tr>
<td>$\log(\theta_{13})$</td>
<td>8.97</td>
<td>0.39</td>
</tr>
<tr>
<td>$\log(\sigma_{14})$</td>
<td>5.37</td>
<td>2.49</td>
</tr>
<tr>
<td>$\log(\nu_{14})$</td>
<td>-0.53</td>
<td>0.17</td>
</tr>
<tr>
<td>$\log(\sigma_{23})$</td>
<td>3.21</td>
<td>0.51</td>
</tr>
<tr>
<td>$\log(\nu_{23})$</td>
<td>-0.43</td>
<td>0.15</td>
</tr>
<tr>
<td>$\log(\sigma_{24})$</td>
<td>0.79</td>
<td>0.91</td>
</tr>
<tr>
<td>α_{13}</td>
<td>0.76</td>
<td>0.43</td>
</tr>
<tr>
<td>α_{14}</td>
<td>-0.34</td>
<td>1.04</td>
</tr>
<tr>
<td>α_{24}</td>
<td>-3.12</td>
<td>0.62</td>
</tr>
</tbody>
</table>
Application to DIVAT (4)

Multivariate Semi-Markov model

- **Regression parameters:**

<table>
<thead>
<tr>
<th>Transition</th>
<th>Coef.</th>
<th>SD</th>
<th>Wald</th>
<th>HR</th>
<th>pvalue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition 1 → 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recipient age (≥ 55 vs. <55 years)</td>
<td>-0.46</td>
<td>0.18</td>
<td>-2.61</td>
<td>0.62</td>
<td>0.0091</td>
</tr>
<tr>
<td>Cancer history (yes vs. no)</td>
<td>-0.89</td>
<td>0.40</td>
<td>-2.20</td>
<td>0.41</td>
<td>0.0278</td>
</tr>
<tr>
<td>Transition 1 → 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Donor age (≥ 55 vs. <55 years)</td>
<td>0.67</td>
<td>0.21</td>
<td>3.17</td>
<td>1.96</td>
<td>0.0015</td>
</tr>
<tr>
<td>Year of first dialysis (>2004 vs. ≤2004)</td>
<td>-0.88</td>
<td>0.29</td>
<td>-2.99</td>
<td>0.41</td>
<td>0.0028</td>
</tr>
<tr>
<td>Transition 1 → 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recipient age (≥ 55 vs. <55 years)</td>
<td>1.44</td>
<td>0.38</td>
<td>3.83</td>
<td>4.22</td>
<td>0.0001</td>
</tr>
<tr>
<td>Cardio-vascular history (yes vs. no)</td>
<td>0.70</td>
<td>0.30</td>
<td>2.33</td>
<td>2.02</td>
<td>0.0198</td>
</tr>
<tr>
<td>Transition 2 → 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recipient gender (Men vs. Women)</td>
<td>-1.09</td>
<td>0.34</td>
<td>-3.17</td>
<td>0.34</td>
<td>0.0015</td>
</tr>
<tr>
<td>Cancer history (yes vs. no)</td>
<td>1.73</td>
<td>0.54</td>
<td>3.22</td>
<td>5.66</td>
<td>0.0013</td>
</tr>
</tbody>
</table>
The modeling of the evolution of kidney transplant recipients

Y. Foucher

Introduction

Context and objectives

Cox-based results

The relative survival

Methods

Results

Discussions

The semi-Markov model (SMM)

Methods

Results

Discussions

The relative semi-Markov model (R-SMM)

Methods

Results

Discussions

References

Collaborations
The modeling of the evolution of kidney transplant recipients

Y. Foucher

Introduction
Context and objectives
Cox-based results

The relative survival

Methods
Results
Discussions

The semi-Markov model (SMM)

Methods
Results
Discussions

The relative semi-Markov model (R-SMM)

Methods
Results
Discussions

References
Collaborations
The modeling of the evolution of kidney transplant recipients

Y. Foucher

Introduction
Context and objectives
Cox-based results
The relative survival
Methods
Results
Discussions

The semi-Markov model (SMM)
Methods
Results
Discussions

The relative semi-Markov model (R-SMM)
Methods
Results
Discussions
References
Collaborations

STATE #1
Functional graft

STATE #2
Graft with acute rejection

STATE #3
RETURN IN DIALYSIS

STATE #4
DEATH WITH A FUNCTIONAL KIDNEY

Recipient age > 55
Cardio-vascular history

Recipient age > 55

Recipient age > 55

1st dialysis > 2004

Donor age > 55

Men recipient
Cancer history

Cancer history

Donor age > 55

1st dialysis > 2004

Donor age > 55

Men recipient

FUNCTIONAL KIDNEY

FUNCTIONAL KIDNEY

FUNCTIONAL KIDNEY

RETURN IN DIALYSIS
Discussions

Conclusions

- SMM is more adapted than Cox modeling:
 - In opposition with the usual graft survival analysis, the independence of the censoring is more realistic.
 - The covariate effects are transition specific: different factor effects for the mortality and for the return in dialysis.
 - The acute rejection is analyzed as a real health state.

Problem

- The SMM does not only deal with the death related to the transplantation.
- Cause-specific approach always impossible
- To our knowledge, no multi-state model with relative survival exists.
The modeling of the evolution of kidney transplant recipients

Y. Foucher

Outline

Introduction
 Context and objectives
 Cox-based results

The relative survival
 Methods
 Results
 Discussions

The semi-Markov model (SMM)
 Methods
 Results
 Discussions

The relative semi-Markov model (R-SMM)
 Methods
 Results
 Discussions

References

Collaborations
The modeling of the evolution of kidney transplant recipients

Y. Foucher

Introduction

Context and objectives

Cox-based results

The relative survival

Methods

Results

Discussions

The semi-Markov model (SMM)

Methods

Results

Discussions

The relative semi-Markov model (R-SMM)

Methods

Results

Discussions

References

Collaborations

Principle of relative semi-Markov model (R-SMM)

STATE #1
Functional graft

STATE #2
Graft with acute rejection

STATE #3
RETURN IN DIALYSIS

STATE #4
DEATH WITH A FUNCTIONAL KIDNEY

Principle: to distinguish the expected mortality (in dialysis) from the related-transplantation mortality

Not persistent state

Persistent state

Transition
Definition of the R-SMM (1)

Common points with the SMM

- The embedded Markov Chain, $P_{ij} \forall ij = 12, 13, 14, 23, 24$.
- The waiting time distributions $F_{ij}(t)$ for transitions $ij \forall j \neq 4$.

Differences with the SMM

- For the transition $1 \rightarrow 4$, let the observed hazard for the hth individual equals to:

$$\lambda_{ob,14}(d_{h,0}) = \lambda^*(d_{h,0} + \Delta_h) + \lambda_{re,14}(d_{h,0})$$

- $d_{h,0}$ is the waiting time in the state 1.
- Δ_h is the time between the first dialysis and the transplantation.
- $\lambda_{ob,14}(.)$ is the observed hazard.
- $\lambda^*(.)$ is the expected mortality hazard.
- $\lambda_{re,14}(.)$ is the related-transplantation hazard.
Definition of the R-SMM (2)

The survival function is deduced as follow:

\[
S_{ob,14}(d_h,0) = \exp\left(-\int_0^{d_h,0} \left(\lambda^*(u + \Delta_h) + \lambda_{re,14}(u)\right) du\right)
\]

\[
= \exp\left(-\int_{\Delta_h}^{d_h,0+\Delta_h} \lambda^*(u) du\right) \exp\left(-\int_0^{d_h,0} \lambda_{re,14}(u) du\right)
\]

\[
= \exp\left(-\Lambda^*(d_h,0 + \Delta_h) + \Lambda^*(\Delta_h)\right) \exp\left(-\Lambda_{re,14}(d_h,0)\right)
\]

\[
= \frac{\exp\left(-\Lambda^*(d_h,0 + \Delta_h)\right)}{\exp\left(-\Lambda^*(\Delta_h)\right)} \exp\left(-\Lambda_{re,14}(d_h,0)\right)
\]

\[
S_{ob,14}(d_h,0) = S_{re,14}(d_h,0) \times S^*(d_h,0 + \Delta_h)/S^*(\Delta_h)
\]
Definition of the R-SMM (3)

- For the transition 2 → 4, we can perform similar developments:

\[\lambda_{ob,24}(d_{h,1}) = \lambda^*(\Delta_h + d_{h,0} + d_{h,1}) + \lambda_{re,14}(d_{h,1}) \]

\[S_{ob,14}(d_{h,1}) = S_{re,14}(d_{h,0}) \times S^*(\Delta_h + d_{h,0} + d_{h,1}) / S^*(\Delta_h + d_{h,0}) \]

- The individual contributions to the likelihood are similar but taking into account the new definitions of the waiting time distribution before a death.
Definition of the R-SMM (4)

- Example: $X_h = \{1, 2, 4\}$

![Diagram showing states and transitions](image)

- We defined for SMM the following individual contribution:

$$\ell_{h,2} = P_{12} f_{12}(d_{h,0}) \times P_{2k} f_{2k}(d_{h,1})$$

- For the R-SMM, we obtained:

$$\ell_{h,2} = P_{12} f_{12}(d_{h,0}) \times P_{2k} \left\{ \lambda^*(\Delta_h + d_{h,0} + d_{h,1}) + \lambda_{re,14}(d_{h,1}) \right\}$$

$$\times S_{re,14}(d_{h,0}) \times S^*(\Delta_h + d_{h,0} + d_{h,1}) / S^*(\Delta_h + d_{h,0})$$
Estimation of the expected survival in dialysis

Available data

- Data from the network REIN (Réseau Epidémiologie et Information en Néphrologie).
- Maximum follow-up equals 5 years:
 - We also have reduced the follow-up of transplanted patients.
- 2 French areas: Languedoc-Roussillon and Ile-de-France.
- Only patients on the waiting list.
- No previous kidney transplantation.
- \(N = 717 \) individuals were included.

Modeling assumptions

- Time between the first transplantation and the death.
- Transplanted-patient were transplanted.
- Parametric PH model with generalized Weibull distribution
- Age, Gender and year of first dialysis were kept in the model.
Expected survival in dialysis

- Exponential distribution of the survival times.
Expected survival in dialysis

- **Results from the multivariate parametric PH model**

<table>
<thead>
<tr>
<th>Factor</th>
<th>HR</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recipient gender (Men vs. Women)</td>
<td>1.23</td>
<td>0.6500</td>
</tr>
<tr>
<td>Recipient age (≥ 55 vs. <55 years)</td>
<td>5.74</td>
<td>0.0003</td>
</tr>
<tr>
<td>Diabetic history (yes vs. no)</td>
<td>3.47</td>
<td>0.0047</td>
</tr>
<tr>
<td>Dialysis method (peritoneal vs. hemodialysis)</td>
<td>4.40</td>
<td>0.0028</td>
</tr>
<tr>
<td>Year of first dialysis (>2004 vs. ≤2004)</td>
<td>1.45</td>
<td>0.5062</td>
</tr>
</tbody>
</table>
SMM and R-SMM without covariates (1)
SMM and R-SMM without covariates (2)

Post transplantation time (t in years)

$P_{2}(1-S_{2}(t))$

- $j=3$ – SMM
- $j=3$ – R-SMM
- $j=4$ – SMM
- $j=4$ – R-SMM
Regression coefficients of the Multivariate R-SMM

<table>
<thead>
<tr>
<th>Transition 1 → 2</th>
<th>Coef.</th>
<th>SD</th>
<th>Wald</th>
<th>HR</th>
<th>pvalue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recipient age (≥ 55 vs. <55 years)</td>
<td>-0.38</td>
<td>0.17</td>
<td>-2.25</td>
<td>0.68</td>
<td>0.0246</td>
</tr>
<tr>
<td>Cancer history (yes vs. no)</td>
<td>-0.85</td>
<td>0.37</td>
<td>-2.29</td>
<td>0.43</td>
<td>0.0219</td>
</tr>
<tr>
<td>Transition 1 → 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Donor age (≥ 55 vs. <55 years)</td>
<td>0.76</td>
<td>0.20</td>
<td>3.79</td>
<td>2.14</td>
<td>0.0001</td>
</tr>
<tr>
<td>Year of first dialysis (>2004 vs. ≤2004)</td>
<td>-0.63</td>
<td>0.24</td>
<td>-2.58</td>
<td>0.53</td>
<td>0.0100</td>
</tr>
<tr>
<td>Transition 1 → 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recipient age (≥ 55 vs. <55 years)</td>
<td>1.33</td>
<td>0.33</td>
<td>4.05</td>
<td>3.78</td>
<td>0.0001</td>
</tr>
<tr>
<td>Cardio-vascular history (yes vs. no)</td>
<td>0.59</td>
<td>0.30</td>
<td>2.00</td>
<td>1.80</td>
<td>0.0460</td>
</tr>
<tr>
<td>Transition 2 → 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recipient gender (Men vs. Women)</td>
<td>-2.17</td>
<td>0.45</td>
<td>-4.80</td>
<td>0.11</td>
<td>0.0000</td>
</tr>
<tr>
<td>Recurrent initial disease (yes vs. no)</td>
<td>1.16</td>
<td>0.42</td>
<td>2.74</td>
<td>3.18</td>
<td>0.0062</td>
</tr>
<tr>
<td>Year of first dialysis (>2004 vs. ≤2004)</td>
<td>-1.51</td>
<td>0.53</td>
<td>-2.86</td>
<td>0.22</td>
<td>0.0042</td>
</tr>
</tbody>
</table>

▶ $\ell = -1752.272$.

▶ Covariates associated with the transition 1 → 4 in the SMM:
 ▶ Recipient age: HR = 4.20
 ▶ Cardio-vascular history: HR = 2.02
Discussion

- We demonstrated the possibility of taking into account the expected mortality in SMM.

- The results are preliminary.

- A lot of limitations have to be underlined:
 - The follow-up is short, but the mortality is a long-term process.
 - The sample size is low according to the high percentage of censoring (n=11 for the transitions 2 → 4).
 - The same analysis will be performed with 4 others French areas (REIN) and with 2 other transplantation hospitals (DIVAT).
 - The quality and the definition of the collected data may be different between DIVAT and REIN.
 - The history of other disease (cardiovascular, cancer, etc.) is collected at two different times.
 - The assumptions of the R-SMM has to be validated (PH assumption and Semi-Markov assumption):
 - Adaptation of the goodness-of-fit analysis proposed by Foucher et al. [1].
 - The parametric distribution of the baseline hazard functions of waiting times.
 - We have only present the additive version, but the multiplicative R-SMM was also developed.
The modeling of the evolution of kidney transplant recipients

Y. Foucher

Outline

Introduction
 Context and objectives
 Cox-based results

The relative survival
 Methods
 Results
 Discussions

The semi-Markov model (SMM)
 Methods
 Results
 Discussions

The relative semi-Markov model (R-SMM)
 Methods
 Results
 Discussions

References

Collaborations
The modeling of the evolution of kidney transplant recipients

Y. Foucher

Introduction

Context and objectives

Cox-based results

The relative survival

Methods

Results

Discussions

The semi-Markov model (SMM)

Methods

Results

Discussions

The relative semi-Markov model (R-SMM)

Methods

Results

Discussions

References

Collaborations

Bibliography I

Y. Foucher, M. Giral, JP. Soulillou, and JP. Daures.
A flexible semi-markov model for interval-censored data and goodness-of-fit testing.

Esteve J, Benhamou E, Croasdale M, and Raymond L.
Relative survival and the estimation of net survival : Elements for further discussion.

PC Lambert, LK Smith, RJ Jones, and JL Botha.
Additive and multiplicative covariate regression models for relative survival incorporating fractional polynomials for time-dependent effects.

M Pohar and J Stare.
Em algorithm based estimation in relative survival regression.

A relative survival regression model using b-spline functions to model non-proportional hazards.

J Vallin and F Mesle.
Tables de mortalité françaises pour les XIXe et XXe siècles et projections pour le XXIe siècles.
The modeling of the evolution of kidney transplant recipients

Y. Foucher

Introduction
Context and objectives
Cox-based results

The relative survival
Methods
Results
Discussions

The semi-Markov model (SMM)
Methods
Results
Discussions

The relative semi-Markov model (R-SMM)
Methods
Results
Discussions

References

Collaborations
The modeling of the evolution of kidney transplant recipients

Y. Foucher

Introduction
Context and objectives
Cox-based results

The relative survival

Methods
Results
Discussions

The semi-Markov model (SMM)

Methods
Results
Discussions

The relative semi-Markov model (R-SMM)

Methods
Results
Discussions

References

Collaborations

Nantes University, ITERT:
 P. Rigouin, A. Akl, K. Launay, M. Giral

The DIVAT network:
 M. Kessler (Nancy), C. Legendre (Paris Necker), L. Rostaing (Toulouse), G. Mourad (Montpellier)

The REIN network:
 P. Landais (Paris Necker), C. Elie (Paris Necker), Y. Duny (IURC), JP. Daurès (IURC)