A multiplicative-regression model to compare the effect of factors associated with the time to graft failure between first and second renal transplant

Katy Tréber-Launay, Magali Giral, Yohann Foucher

EA 4275 Biostatistics, Clinical Research and Subjective Measures in Health Sciences, Nantes University, Nantes Transplantation, Urology and Nephrology Institute (ITUN), Nantes Hospital and University, Inserm U1064, Centaure, Nantes, France

August 20, 2012
Introduction

Kidney transplantation

Definition of the graft failure

- **END-STAGE RENAL DISEASE**
 - Patient death with a functioning graft
 - = Patient-and-graft survival

- **KIDNEY GRAFT**
 - Patient death after return to dialysis
 - = Censoring

DIALYSIS

- Patient death with a functioning graft
Objective

⇒ Are risk factors associated with graft failure comparable between first and second grafts?
Limits of classical survival models

- Test of interaction between each covariate and graft rank
- Only covariates common to first and second grafts

Figure 1: Clinical trajectory before second graft.
Relative survival models

Classical approach
- Additive-regression model for relative survival (Estève et al. Stat in Med 1990)
 - Endpoint = mortality related to chronic diseases
 - The expected mortality is based on general population

Proposed approach
- **Multiplicative**-regression model for relative survival (Andersen et al. Stat in Med 1989)
 - Endpoint = **graft failure** (return to dialysis or patient death)
 - The expected graft failure hazard is **estimated** in a control group (first graft)
Inclusion criteria

French DIVAT database

- Centers: Nantes, Necker, Nancy, Toulouse, Montpellier, Lyon
- Adult recipients
- Transplanted from 1996 to 2010
- Under mycophenolate mofetil and steroids at transplantation

Group of interest

566 second transplant recipients (STR)

Control group

2206 first transplant recipients (FTR)
Multiplicative-regression models for relative survival

- The hazard function

\[h^{(o)}(t_i, z_i) = h^{(e)}(t_i, z^{(e)}_i) h^{(r)}(t_i, z^{(r)}_i) \]

Observed hazard function in the STR group

\[z_i = \text{covariates associated with the observed hazard} \]

Expected hazard function in the FTR group

\[z^{(e)}_i = \text{subset of } z_i, \text{ associated with the expected hazard} \]

Relative hazard function in the STR group

\[z^{(r)}_i = \text{subset of } z_i, \text{ associated with the relative hazard} \]

STEP 1

STEP 2
Methods

Expected hazard

STEP 1:

Estimation of the expected hazard function (N\(\text{(e)}\) = 2206 FTR)

- Parametric model and proportional hazards assumption

\[
h^{(e)}(t_i, z_{i_j}^{(e)}) = h_0^{(e)}(t_i) \exp\left(\sum_{j=1}^{p^{(e)}} \beta_j^{(e)} z_{i_j}^{(e)}\right)
\]

- \(h_0^{(e)}(t_i)\) is a piecewise function

- Maximum-likelihood estimation

\[
\log \mathcal{L} = \sum_{i=1}^{N^{(e)}} \left\{ \delta_i \log(h^{(e)}(t_i, z_{i_j}^{(e)})) - H^{(e)}(t_i, z_{i_j}^{(e)}) \right\}
\]

with \(\delta_i = 1\) if the graft failure is observed

\(\delta_i = 0\) if the event is right-censored
Methods

Relative hazard

STEP 2 :

Estimation of the relative hazard function \((N^{(r)} = 566 \text{ STR})\)

- Parametric model and proportional hazards assumption

\[
h^{(r)}(t_i, z_i^{(r)}) = h_0^{(r)}(t_i) \exp\left(\sum_{j=1}^{p^{(r)}} \beta_j^{(r)} z_{i,j}^{(r)}\right)
\]

- \(h_0^{(r)}(t_i)\) is a piecewise function

- Maximum-likelihood estimation

\[
\log L = \sum_{i=1}^{N^{(o)}} \left\{ \delta_i \log(h^{(o)}(t_i, z_i)) - H^{(o)}(t_i, z_i) \right\}
\]

\[
h^{(e)}(t_i, z_i^{(e)}) h^{(r)}(t_i, z_i^{(r)}) \int_0^{t_i} h^{(e)}(u, z_i^{(e)}) h^{(r)}(u, z_i^{(r)}) \, du
\]
Methods

Interpretation of the regression coefficient

CASE 1 :

For $z_1^{(r)} \notin z_j^{(e)} \implies \exp(\beta_1^{(r)}) = \text{hazard ratio}$

$$HR_{z_1=1/z_1=0}^{(o)} = \frac{h^{(e)}(t_i, z_i^{(e)}) \cdot h_0^{(r)}(t_i) \exp(\sum_{j=1}^{p^{(r)}} \beta_j^{(r)} z_{i,j}^{(r)})}{h^{(e)}(t_i, z_i^{(e)}) \cdot h_0^{(r)}(t_i) \exp(\sum_{j=2}^{p^{(r)}} \beta_j^{(r)} z_{i,j}^{(r)})} = \exp(\beta_1^{(r)})$$

CASE 2 :

For $z_1^{(r)} \in z_j^{(e)} \implies \exp(\beta_1^{(r)}) = \text{weighting factor of HR}$

$$HR_{z_1=1/z_1=0}^{(o)} = \frac{h^{(e)}(t_i) \exp(\sum_{j=1}^{p^{(e)}} \beta_j^{(e)} z_{i,j}^{(e)}) \cdot h_0^{(r)}(t_i) \exp(\sum_{j=1}^{p^{(r)}} \beta_j^{(r)} z_{i,j}^{(r)})}{h^{(e)}(t_i) \exp(\sum_{j=2}^{p^{(e)}} \beta_j^{(e)} z_{i,j}^{(e)}) \cdot h_0^{(r)}(t_i) \exp(\sum_{j=2}^{p^{(r)}} \beta_j^{(r)} z_{i,j}^{(r)})} = \exp(\beta_1^{(e)}) \exp(\beta_1^{(r)})$$
Methods

Covariates tested in the relative hazard

<table>
<thead>
<tr>
<th>Covariates</th>
<th>Included in $z_j^{(e)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recipient age (≥ 55 years / < 55 years)</td>
<td>✓</td>
</tr>
<tr>
<td>Recipient gender (male / female)</td>
<td>✓</td>
</tr>
<tr>
<td>Causal nephropathy (recurrent / non recurrent)</td>
<td>✓</td>
</tr>
<tr>
<td>History of comorbidities (positive / negative)</td>
<td>✓</td>
</tr>
<tr>
<td>Body mass index (≥ 30 kg.m$^{-2}$ / < 30 kg.m$^{-2}$)</td>
<td>✓</td>
</tr>
<tr>
<td>Anti-class I or II PRA (positive / negative)</td>
<td>✓</td>
</tr>
<tr>
<td>Dialysis prior transplantation (positive / negative)</td>
<td>✓</td>
</tr>
<tr>
<td>Recipient EBV or CMV serology (positive / négative)</td>
<td></td>
</tr>
<tr>
<td>Type of donor (deceased donor / living donor)</td>
<td>✓</td>
</tr>
<tr>
<td>Donor age (≥ 55 years / < 55 years)</td>
<td>✓</td>
</tr>
<tr>
<td>Donor EBV serology (positive / négative)</td>
<td>✓</td>
</tr>
<tr>
<td>Donor gender (male / female)</td>
<td>✓</td>
</tr>
<tr>
<td>Cause of donor death (cerebro-vascular / other)</td>
<td>✓</td>
</tr>
<tr>
<td>Donor serum creatinine (≥ 133 µmol/l / < 133 µmol/l)</td>
<td>✓</td>
</tr>
<tr>
<td>Donor CMV serology (positive / négative)</td>
<td></td>
</tr>
<tr>
<td>Transplantation period (< 2005 / ≥ 2005)</td>
<td>✓</td>
</tr>
<tr>
<td>Number of HLA-A-B-DR mismatches (> 4 / ≤ 4)</td>
<td>✓</td>
</tr>
<tr>
<td>Induction therapy (depleting / non depleting)</td>
<td>✓</td>
</tr>
<tr>
<td>Cold ischemia time ($\geq 24h$ / $< 24h$)</td>
<td>✓</td>
</tr>
<tr>
<td>Survival time of the first transplant (< 1 year / ≥ 1 year)</td>
<td></td>
</tr>
<tr>
<td>Time before retransplantation (> 3 years / ≤ 3 years)</td>
<td></td>
</tr>
<tr>
<td>First graft transplantectomy (positive / négative)</td>
<td></td>
</tr>
</tbody>
</table>
Results

Relative baseline hazard function $\leftrightarrow z^{(r)} = 0$
Results

Hazard ratio obtained from the multivariate model

Final multivariate model

<table>
<thead>
<tr>
<th>Covariates</th>
<th>Expected (FTR)</th>
<th>Relative (STR)</th>
<th>Observed (STR)</th>
<th>95% CI</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transplant period (< 2005/≥2005)</td>
<td>1.37</td>
<td>1.27</td>
<td>-</td>
<td>0.83 - 1.95</td>
<td>0.2604</td>
</tr>
<tr>
<td>Recipient gender (male / female)</td>
<td>1.19</td>
<td>0.68</td>
<td>-</td>
<td>0.45 - 1.02</td>
<td>0.0645</td>
</tr>
<tr>
<td>Recipient age (≥55 years/<55 years)</td>
<td>1.55</td>
<td>1.61</td>
<td>-</td>
<td>1.03 - 2.52</td>
<td>0.0387</td>
</tr>
<tr>
<td>Donor age (≥55 years/<55 years)</td>
<td>1.37</td>
<td>0.59</td>
<td>-</td>
<td>0.37 - 0.95</td>
<td>0.0294</td>
</tr>
<tr>
<td>Type of donor (deceased/living)</td>
<td>2.91</td>
<td>0.33</td>
<td>-</td>
<td>0.12 - 0.91</td>
<td>0.0332</td>
</tr>
<tr>
<td>Donor gender (male / female)</td>
<td>-</td>
<td>-</td>
<td>1.57</td>
<td>1.01 - 2.45</td>
<td>0.0443</td>
</tr>
<tr>
<td>Retransplant time (>3 years/≤3 years)</td>
<td>-</td>
<td>-</td>
<td>2.06</td>
<td>1.33 - 3.20</td>
<td>0.0012</td>
</tr>
</tbody>
</table>

xxx = forced covariates
Results

Hazard ratio obtained from the multivariate model

CASE 1: $z_{1(r)} \neq z_{j(e)}$

<table>
<thead>
<tr>
<th>Covariates</th>
<th>Expected (FTR)</th>
<th>Relative (STR)</th>
<th>Observed (STR)</th>
<th>95% CI</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transplant period (< 2005/≥2005)</td>
<td>1.37</td>
<td>1.27</td>
<td>-</td>
<td>0.83 - 1.95</td>
<td>0.2604</td>
</tr>
<tr>
<td>Recipient gender (male / female)</td>
<td>1.19</td>
<td>0.68</td>
<td>-</td>
<td>0.45 - 1.02</td>
<td>0.0645</td>
</tr>
<tr>
<td>Recipient age (≥55 years/<55 years)</td>
<td>1.55</td>
<td>1.61</td>
<td>-</td>
<td>1.03 - 2.52</td>
<td>0.0387</td>
</tr>
<tr>
<td>Donor age (≥55 years/<55 years)</td>
<td>1.37</td>
<td>0.59</td>
<td>-</td>
<td>0.37 - 0.95</td>
<td>0.0294</td>
</tr>
<tr>
<td>Type of donor (deceased/living)</td>
<td>2.91</td>
<td>0.33</td>
<td>-</td>
<td>0.12 - 0.91</td>
<td>0.0332</td>
</tr>
<tr>
<td>Donor gender (male / female)</td>
<td>-</td>
<td>-</td>
<td>1.57</td>
<td>1.01 - 2.45</td>
<td>0.0443</td>
</tr>
<tr>
<td>Retransplant time (>3 years/≤3 years)</td>
<td>-</td>
<td>-</td>
<td>2.06</td>
<td>1.33 - 3.20</td>
<td>0.0012</td>
</tr>
</tbody>
</table>

$xxx = \text{forced covariates}$

$$\text{HR}^{(o)} = \exp(\beta_{1(r)})$$
Results

Hazard ratio obtained from the multivariate model

CASE 2 : $z_1^{(r)} \in z_j^{(e)}$

<table>
<thead>
<tr>
<th>Covariates</th>
<th>Expected (FTR)</th>
<th>Relative (STR)</th>
<th>Observed (STR)</th>
<th>95% CI</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transplant period (< 2005/≥2005)</td>
<td>1.37</td>
<td>1.27</td>
<td>-</td>
<td>0.83 - 1.95</td>
<td>0.2604</td>
</tr>
<tr>
<td>Recipient gender (male / female)</td>
<td>1.19</td>
<td>0.68</td>
<td>-</td>
<td>0.45 - 1.02</td>
<td>0.0645</td>
</tr>
<tr>
<td>Recipient age (≥55 years/<55 years)</td>
<td>1.55</td>
<td>1.61</td>
<td>2.50</td>
<td>1.03 - 2.52</td>
<td>0.0387</td>
</tr>
<tr>
<td>Donor age (≥55 years/<55 years)</td>
<td>1.37</td>
<td>0.59</td>
<td>0.81</td>
<td>0.37 - 0.95</td>
<td>0.0294</td>
</tr>
<tr>
<td>Type of donor (deceased/living)</td>
<td>2.91</td>
<td>0.33</td>
<td>0.96</td>
<td>0.12 - 0.91</td>
<td>0.0332</td>
</tr>
<tr>
<td>Donor gender (male / female)</td>
<td>-</td>
<td>-</td>
<td>1.57</td>
<td>1.01 - 2.45</td>
<td>0.0443</td>
</tr>
<tr>
<td>Retransplant time (>3 years/≤3 years)</td>
<td>-</td>
<td>-</td>
<td>2.06</td>
<td>1.33 - 3.20</td>
<td>0.0012</td>
</tr>
</tbody>
</table>

xxx = forced covariates

\[
HR^{(o)} = \exp(\beta_1^{(e)}) \exp(\beta_1^{(r)})
\]
Clinical conclusions

- A particular attention to recipient age for clinical practice when faced a second transplantation should be paid

- A selection bias? Only transplants from "good quality" donors are proposed for STR when the donor is aged or deceased.

- An early effect of immunisation? The immunisation might take over the effect of other factors (donor age and donor type) for STR.

Statistical conclusion

- No necessity to test interactions between covariates and graft rank
- Possibility to take into account specific covariates for interest groups
Limits and prospects

Limits

- Parameters of the expected hazard function (STEP 1) were afterwards considered as constant when used for the estimation of the relative hazard (STEP 2).
- Proportional hazard model with a piecewise baseline function were chosen for the estimation of both baseline hazards functions.
- Only time-invariant covariates were included in the model.

⇒ A Monte-Carlo approach is in process.

⇒ A more flexible model for instance with spline functions.

⇒ A generalisation with time-dependent covariates.
Particular thanks to :

- The EA-4275 Unit
- The DIVAT-Biostatistics Unit :
 - Magali Giral, Scientific council coordinator
 - Pascal Daguin, Computer engineer
 - Sandra Lefloch, Clinical research associate
 - Yohann Foucher, Associate professor in Biostatistics
 - Etienne Dantan, Associate professor in Biostatistics
 - Marine Lorent, PhD Student in Biostatistics
 - Florence Gillaizeau, PhD Student in Biostatistics
 - Philippe Tessier, Health Economist
 - Florent Leborgne, Trainee in Biostatistics

Of note

- This presentation will be available online : http ://www.divat.fr/en