Adjusted survival curves by using inverse probability of treatment weighting: the comparison of three adapted log-rank tests

Florent Le Borgne 1,2 & Yohann Foucher 1

1 EA4275-SPHERE - ITUN, University of Nantes, France
2 IDBC/A2com, Pace, France
florent.le-borgne@etu.univ-nantes.fr

27 August 2014
Introduction

Context: Observational study in presence of survival data.

- The causality evaluation between the exposure and the time-to-event requires adjustment.
 - Kaplan-Meier estimator inadequate
 - Multivariate (Cox) model suitable but loss of information:
 Result summarized in a single HR: no graphical representation of a possible evolution over time of the HR

Solution

Adjusted survival curves using the method IPTW (Inverse Probability of Treatment Weighting) based on propensity scores
• The log-rank test = standard test for comparing two survival curves.
• Three versions adapted to the adjusted Kaplan-Meier estimator.
• Other methods based on propensity scores exist (stratification, matching, IPTW).

Objectives of our simulation study

- Evaluate the performances of the adjusted log-rank test compared to the Cox model in terms of type I and II error rates ⇒ Is it necessary to use a multivariate Cox model?
- Choose the most powerful among the three
Notations

- $n = \text{sample size}$
- $T_i = \text{participating time} (i = 1, \ldots, n)$
- $\delta_i = \text{censoring indicator} (\delta_i = 0 \text{ if } T_i \text{ is a right censoring and } \delta_i = 1 \text{ otherwise})$
- $X_i = \text{explanatory variable representing the interest exposure factor composed of } K \text{ groups}$
- $D_k = \text{number of different times for which events are observed in the group } k$, we then have at time t_j ($j = 1, \ldots, D_k$):
 - $d_{jk} = \sum_{i: t_i = t_j} \delta_i I(X_i = k)$: number of subjects in group k undergoing the event in time t_j
 - $Y_{jk} = \sum_{i: t_i \geq t_j} I(X_i = k)$: number of subjects in group k at risk at time t_j
 - Let $d_j = \sum_{k=1}^{K} d_{jk}$ and $Y_j = \sum_{k=1}^{K} Y_{jk}$
The IPTW weighting

- The IPTW method proposes to correct the contribution of each individual by a weight $w_{ik} = 1/p_{ik}$.

 where $p_{ik} = P(X_i = k | Z_i)$

 and Z_i the vector of potential confounding factors

- The weighted number of events and individuals at risk can then be obtained:

 - $d_{jk}^w = \sum_{i: t_i = t_j} w_{ik} \delta_i I(X_i = k)$

 - $Y_{jk}^w = \sum_{i: t_i \geq t_j} w_{ik} I(X_i = k)$

 - $d_j^w = \sum_{k=1}^K d_{jk}^w$ et $Y_j^w = \sum_{k=1}^K Y_{jk}^w$

- Let us consider now only two groups, noted $X = 0$ et $X = 1$.
Xu and al. proposed an adjusted log-rank test equivalent to the standard one by simply replacing:

- The observed numbers of events by the weighted ones
- The numbers of individuals at risk by the weighted ones

The resulting statistic is: \(\frac{G^w}{\sqrt{\text{Var}(G^w)}} \) where:

- \(D \) is the number of different times for which events are observed regardless of group
- \(G^w = \sum_{j=1}^{D} d^w_j - Y^w_{j1}(\frac{d^w_j}{Y^w_j}) \)
- \(\text{Var}(G^w) = \sum_{j=1}^{D} \left\{ \frac{Y^w_{j0} Y^w_{j1} d^w_j (Y^w_j - d^w_j)}{(Y^w_j)^2 (Y^w_j - 1)} \right\} \)

A second variant of the adjusted log-rank test is given by Sugihara.

- Differs from the first by the formula of the variance used.

\[G^w = \sum_{j=1}^{D} d_j^w - Y_{j1}^w \left(\frac{d_j^w}{Y_j^w} \right) \]

\[\text{Var}(G'^w) = \sum_{j=1}^{D} \left\{ \frac{d_j(Y_j - d_j)}{Y_j(Y_j - 1)} \sum_{i=1}^{Y_j} \left[\left(\frac{Y_{j0}^w}{Y_j^w} \right)^2 w_i^2 X_i + \left(\frac{Y_{j1}^w}{Y_j^w} \right)^2 w_i^2 (1 - X_i) \right] \right\} \]

Xie and Liu proposed another adaptation of the log-rank test by adjusting the weights of each individual over the time.

- At time $t_j \ (j = 1, \ldots, D_k)$, the weight for an individual i in the group k is reassigned as:
 \[
 w'_{ijk} = w_{ik} \cdot \frac{Y_{jk}}{Y^w_{jk}}
 \]

- The weighted number of events and at risk subjects becomes:
 \[
 d^w_{jk} = \sum_{i: t_i = t_j} w'_{ijk} \delta_i I(X_i = k)
 \]
 and
 \[
 Y^w_{jk} = \sum_{i: t_i \geq t_j} w'_{ijk} I(X_i = k)
 \]

• Same formulas as those proposed by Sugihara but with different weights:

\[G_{w'} = \sum_{j=1}^{D} d_{j1}^{w'} - Y_{j1}^{w'} \left(\frac{d_{j}^{w'}}{Y_{j}^{w'}} \right) \]

\[\text{Var}(G_{w'}) = \sum_{j=1}^{D} \left\{ \frac{d_{j}(Y_{j} - d_{j})}{Y_{j}(Y_{j} - 1)} \sum_{i=1}^{Y_{j}} \left[\left(\frac{Y_{j0}^{w'}}{Y_{j}^{w'}} \right)^{2} w_{ij}'^{2} X_{i} + \left(\frac{Y_{j1}^{w'}}{Y_{j}^{w'}} \right)^{2} w_{ij}'^{2}(1 - X_{i}) \right] \right\} \]

Two other models based on propensity scores

- Weighted univariate Cox model proposed by Cole et Hernán (2004)
 - Exposure : only variable in the model
 - Weighted by the weights w_{ik}

- Matching on the logit of the propensity score
 - Matching 1:1 without replacement with the nearest neighbor
 - Caliper equal to 0.2 of the standard deviation
 - Stratified log-rank test

 Rosenbaum PR. and Rubin DB. Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. *The American Statistician* (1985)
Simulation study

- Simulations limited to 5 variables:
 - 1 binary exposure
 - 4 confounders

- Performances of the different models were compared for different:
 - Right-censoring rates (0.30 and 0.68)
 - Sample sizes (100, 250, 500 and 1500)
 - Percentages of exposed subjects (5%, 20% and 40%)
 - Coefficient β_X associated with the exposure variable under interest (0, 0.250, 0.365, 0.500)

- When $\beta_X = 0$ we calculated the percentage of rejection of the null hypothesis (type I error rate).

- When $\beta_X \neq 0$ we calculated the percentage of non-rejection of the null hypothesis (type II error rate).
Simulation Results

<table>
<thead>
<tr>
<th>β_X</th>
<th>n</th>
<th>Multivariate Cox</th>
<th>X_u</th>
<th>Sugihara</th>
<th>X_{ie}</th>
<th>Weighted Cox</th>
<th>Caliper</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>100</td>
<td>5.69</td>
<td>19.53</td>
<td>6.94</td>
<td>6.12</td>
<td>10.92</td>
<td>4.70</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>5.31</td>
<td>23.42</td>
<td>6.58</td>
<td>6.27</td>
<td>8.80</td>
<td>4.81</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>4.59</td>
<td>25.39</td>
<td>5.73</td>
<td>5.46</td>
<td>7.10</td>
<td>5.29</td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>4.85</td>
<td>27.58</td>
<td>5.58</td>
<td>5.43</td>
<td>6.38</td>
<td>4.93</td>
</tr>
<tr>
<td>0.250</td>
<td>100</td>
<td>90.89</td>
<td>74.44</td>
<td>89.04</td>
<td>89.80</td>
<td>84.04</td>
<td>94.75</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>86.05</td>
<td>65.78</td>
<td>86.20</td>
<td>86.37</td>
<td>82.57</td>
<td>92.28</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>77.57</td>
<td>56.41</td>
<td>82.59</td>
<td>82.54</td>
<td>79.11</td>
<td>89.64</td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>43.78</td>
<td>31.99</td>
<td>65.14</td>
<td>64.74</td>
<td>60.86</td>
<td>75.99</td>
</tr>
<tr>
<td>0.365</td>
<td>100</td>
<td>86.90</td>
<td>70.03</td>
<td>85.35</td>
<td>85.87</td>
<td>79.50</td>
<td>93.10</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>74.66</td>
<td>55.24</td>
<td>79.20</td>
<td>79.30</td>
<td>73.37</td>
<td>88.20</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>56.71</td>
<td>40.35</td>
<td>69.68</td>
<td>69.26</td>
<td>64.21</td>
<td>81.67</td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>13.30</td>
<td>13.79</td>
<td>40.95</td>
<td>40.37</td>
<td>36.97</td>
<td>54.16</td>
</tr>
<tr>
<td>0.500</td>
<td>100</td>
<td>80.13</td>
<td>61.30</td>
<td>79.06</td>
<td>79.79</td>
<td>71.88</td>
<td>90.89</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>58.80</td>
<td>41.57</td>
<td>68.06</td>
<td>67.87</td>
<td>60.14</td>
<td>81.77</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>32.03</td>
<td>24.40</td>
<td>54.94</td>
<td>54.21</td>
<td>47.34</td>
<td>69.80</td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>0.99</td>
<td>2.95</td>
<td>16.81</td>
<td>16.15</td>
<td>14.76</td>
<td>27.00</td>
</tr>
</tbody>
</table>

Table 1: Error rates obtained from data with 40% of exposed subjects and 68% of censure. (a) Type I errors rate in percentages. (b) Type II errors rate in percentages. 10 000 samples simulated for each scenario.
Conclusion of simulation study

- Best performances obtained by the multivariate Cox model.
- Matched model: loss of power.
- Univariate weighted Cox model: more important type I error rate.
- Among the three versions of the adjusted log-rank tests:
 - The one proposed by Xu and al. does not respect the type I error rate
 - The two others show type I and type II error rates slightly higher than those of the multivariate Cox model
 - Slightly better type I error rates for the one proposed by Xie and Liu
Two limitations appear in our study:

- We have only considered the case of a binary exposure.
 * Adjusted survival curves can be generalized to more than two groups (multinomial logistic regression)
 * Adjusted log-rank test requires further developments
- Only the context in which the PH assumption holds true was simulated.
• In conclusion, we retain two good methods:
 - The multivariate Cox model
 - The adjusted survival curves with the log-rank test proposed by Xie et Liu

• Multivariate Cox model: the most efficient, requires verification of assumptions, summarizes the results in one HR.

• Adjusted survival curves: illustrate more precisely the differences in survivals between groups, lower performances of the associated adjusted log-rank test.

- Rosenbaum PR. and Rubin DB. Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. *The American Statistician*