The use of joint models for longitudinal and time-to-event data: an application on kidney transplantation

Marie-Cécile Fournier

EA4275 methods for Patients-centered outcomes and HEalth ResEarch, ITUN INSERM UMR1064, Nantes university

August, 25th 2016
Objectives of my talk

1. To present an application of shared random effect multivariable joint model in renal transplantation

 ![CrossMark]

 Bur J Epidemiol

 CLINICAL EPIDEMIOLOGY

 A joint model for longitudinal and time-to-event data to better assess the specific role of donor and recipient factors on long-term kidney transplantation outcomes

 Marie-Cécile Fournier¹²· Yohann Fouche¹· Paul Blanche³· Fanny Buron⁴· Magali Girì²⁵· Etienne Dantan¹

2. To discuss the usefulness and limits of such complex models in clinical applications
In chronic diseases:

- **Longitudinal markers** allow to follow patient evolution → helpful to determine the most beneficial care
- Occurrence of **events** is overseen
In chronic diseases:

- **Longitudinal markers** allow to follow patient evolution → helpful to determine the most beneficial care
- Occurrence of **events** is overseen

In renal transplantation:

- **Serum creatinine** (SCr) is routinely measured during the follow-up
- 2 major events:
 - graft loss (return to dialysis or retransplantation)
 - death with a functioning graft
- **Graft failure** is a major clinical event of interest

It is well-known that:

↑ SCr is associated with ↑ graft failure risk
Specific role of factors?
Characteristics of recipient, donor and graft

Mixed models

Graft failure risk

Serum creatinine evolution
Context

- Serum creatinine evolution
- Graft failure risk

Survival model:
- Parametric
- Cox

Characteristics of recipient, donor and graft
Characteristics of recipient, donor and graft

Serum creatinine evolution

Graft failure risk

Time dependent Cox model

! endogenous variable!
Joint model for longitudinal and time-to-event data
(Rizopoulos, Chapman & Hall 2012)
The DIVAT cohort (www.divat.fr):
= Données Informatisées et VAlidées en Transplantation
⇒ computerized and validated data in transplantation

French observational and prospective cohort

- 2749 Kidney recipients
- Transplanted between 2000 and 2014
- SCr measurements: yearly recorded
 - 4 SCr measurements / patient were recorded in median
- Event: Graft failure
 - 481 events observed
 - Median follow-up time: 4 years
Submodel hypotheses are checked separately:

- **Longitudinal process:**
 - logarithmic transformation of SCr values
 ⇒ for the linearity and homoscedasticity of the residuals
 - 2 random effects included (baseline value and slope)
 - unstructured variance-covariance matrix

- **Survival process:**
 - no variable with time-dependent effect
 - categorization of some continuous variables

Quantitative variables are standardized (as recommended in *Rizopoulos 2012*)
• **Modeling strategy:**

 1. Specification is defined in a crude joint model:
 - baseline risk function type (Weibull)
 - dependence type (level and slope)

 2. Covariate selection:
 - univariable analyses (3 fixed effects/variable: on baseline log(SCr), on log(SCr) slope & on graft failure risk)
 - non significant effect removed in backward way (5%)
 - multivariable joint model: stepwise inclusion of significant variables

• **R software (3.0.1 version) with the JM package (1.3 version)** *(Rizopoulos 2010)*
Multivariable joint model
(n=2584 patients)

<table>
<thead>
<tr>
<th></th>
<th>Longitudinal process</th>
<th>Survival process</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RC in baseline 1-yr SCr</td>
<td>p-value</td>
</tr>
<tr>
<td>Current value of SCr (µmol/L), for 25% growth</td>
<td>-2.0%</td>
<td><0.0001</td>
</tr>
<tr>
<td>Current slope of log(SCr), for 25% growth</td>
<td>1.89</td>
<td>0.0097</td>
</tr>
<tr>
<td>Recipient age (for a 10 years increase)</td>
<td>-2.0%</td>
<td><0.0001</td>
</tr>
<tr>
<td>Recipient gender (male vs female)</td>
<td>7.7%</td>
<td><0.0001</td>
</tr>
<tr>
<td>Diabetes histories (yes vs no)</td>
<td>0.0%</td>
<td>0.9866</td>
</tr>
<tr>
<td>Cardiovascular histories (yes vs no)</td>
<td>0.0%</td>
<td>0.9812</td>
</tr>
<tr>
<td>3-month SCr (for a 50 µmol/L increase)</td>
<td>8.1%</td>
<td><0.0001</td>
</tr>
<tr>
<td>6-month SCr (for a 50 µmol/L increase)</td>
<td>18.0%</td>
<td><0.0001</td>
</tr>
<tr>
<td>Acute rejection episode in 1st year (yes vs no)</td>
<td>5.7%</td>
<td><0.0001</td>
</tr>
<tr>
<td>Anticlass I immunization (+ vs -)</td>
<td>0.0%</td>
<td>0.2707</td>
</tr>
<tr>
<td>Rank of graft: second vs first</td>
<td>1.32</td>
<td>0.0381</td>
</tr>
<tr>
<td>Donor type (ref: living donor)</td>
<td>0.0773</td>
<td>0.0022</td>
</tr>
<tr>
<td>Cerebrovascular death</td>
<td>2.8</td>
<td>12.5%</td>
</tr>
<tr>
<td>Non cerebrovascular death</td>
<td>1.9</td>
<td>7.1%</td>
</tr>
<tr>
<td>Donor gender (male vs female)</td>
<td>0.83</td>
<td>0.0589</td>
</tr>
<tr>
<td>Donor age (for a 10 years increase)</td>
<td>5.8%</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

RC: Relative Change; SCr: Serum Creatinine
Key message

Serum creatinine evolution

Risk factors associated to the marker
- Type of donor
- Donor age...

Risk factors associated to both processus
- Cardiovascular history
- Immunisation anti-HLA class I
- Acute rejection episode...

Graft failure risk

Risk factors associated to the event
- Graft rank...

Level and slope
Discussion

- Joint models are interested
 - allow to account for the dynamic evolution of the SCr and the informative censoring process...
 - well for endogenous variable
 - for their epidemiological view of chronic disease evolution

but they are limited:
- time-consuming ++
- with several step \(h_0, \) dependance
- surprisingly, not really different than mixed model + time-dependent cox model in our application

How can we do to improve their use in clinical trials?

Thank you for your attention