

46e Journées de Statistique

Deux stratégies alternatives pour comparer l'effet des facteurs de risque entre 2 groupes: Illustration par l'analyse des premières et des secondes transplantations rénales

Katy Trébern-Launay, Yohann Foucher

Institut de Transplantation, Urologie, Néphrologie (ITUN), Inserm U1064, Centaure EA 4275 - SPHERE Biostatistique, Pharmacoépidémiologie et Mesures Subjectives en Santé, Université de Nantes

Rennes, 5 Juin 2014

La question posée

Les secondes transplantations rénales ont plus de risques d'échec de greffe (retour en dialyse ou décès du patient) que les premières transplantations.

Trébern-Launay et al. (PLoS ONE, 2012) [1]

Les facteurs de risque associés à l'échec de greffe ont-ils des effets différents entre les 2 groupes ?

Limites du modèle de Cox pour répondre à la question

- Test de l'interaction entre le rang de greffe et chaque variable
- Prise en compte des variables communes (≠ variables spécifiques)

2/12

Deux approches alternatives

- · Modèle de survie relative à risques multiplicatifs
- · Modèle de Cox stratifié sur le rang de greffe

Résult

Introduction

Matériel

Critères d'inclusion

Patients issus de la cohorte française multicentrique DIVAT

- = Données Informatisées et VAlidées en Transplantation
 - Patients adultes
 - Receveurs d'une première ou d'une seconde transplantation rénale
 - Transplantés entre 1996 et 2010
 - Centres: Nantes, Necker, Nancy, Toulouse, Montpellier, Lyon

Groupe d'interêt

566 receveurs d'une seconde transplantation (2es greffes)

2206 receveurs d'une première transplantation (1res greffes)

Groupe contrôle

Principe adapté à la problématique des 2es greffes

- Survie observée corrigée par la survie attendue estimée à partir d'un groupe contrôle - Andersen et al. (Stat in Med, 1989) [2]
- Fonction de risque observé chez les 2^{es} greffes donnée par :

$$h^{o}(t_i, z_i) = h^{a}(t_i, z_i^{a}) h^{r}(t_i, z_i^{r})$$

ETAPE 1

Fonction de risque attendu chez les 1res greffes $(i = 1, \ldots, n_a)$

 Z_i^a = sous-ensemble de zi, associé au risque attendu

ETAPE 2

Fonction de risque relatif à la 2e greffe $(i = 1, ..., n_r)$

 \mathbf{z}_{i}^{r} = sous-ensemble de zi, associé au risque relatif

Principe adapté à la problématique des 2es greffes

 Survie observée corrigée par la survie attendue estimée à partir d'un groupe contrôle - Andersen et al. (Stat in Med, 1989) [2]

Fonction de risque observé chez les 2^{es} greffes donnée par :

$$h^{o}(t_{i},z_{i}) = h_{0}^{a}(t_{i}) \exp(\beta^{a}z_{i}^{a}) h^{r}(t_{i},z_{i}^{r})$$

ETAPE 1

Fonction de risque attendu chez les 1^{res} greffes ($i = 1, ..., n_a$)

 z_i^a = sous-ensemble de z_i , associé au risque attendu

ETAPE 2

Fonction de risque relatif à la 2^e greffe $(i = 1, ..., n_r)$

 z_i^r = sous-ensemble de z_i , associé au risque relatif

•
$$\log \mathcal{VP}_a = \sum_{i=1}^{n_a} \delta_i \left\{ \beta^a z_i^a - \log \left(\sum_{k: t_k \ge t_i} \exp(\beta^a z_k^a) \right) \right\}$$

Principe adapté à la problématique des 2es greffes

 Survie observée corrigée par la survie attendue estimée à partir d'un groupe contrôle - Andersen et al. (Stat in Med, 1989) [2]

Fonction de risque observé chez les 2^{es} greffes donnée par :

 $h^o(t_i, z_i) = h^a(t_i, z_i^a) h_0^r(t_i) exp(\beta^r z_i^r)$

ETAPE 1

Fonction de risque attendu chez les 1^{res} greffes ($i = 1, ..., n_a$)

 z_i^a = sous-ensemble de z_i , associé au risque attendu

ETAPE 2

Fonction de risque relatif à la 2 $^{\circ}$ greffe $(i = 1, ..., n_r)$

 z_i^r = sous-ensemble de z_i , associé au risque relatif

• $\log \mathcal{VP}_r = \sum_{i=1}^{n_r} \delta_i \left\{ \hat{\beta}^a \mathbf{z}_i^a + \beta^r \mathbf{z}_i^r - \log \left(\sum_{k: t_k \ge t_i} \exp(\hat{\beta}^a \mathbf{z}_k^a) \exp(\beta^r \mathbf{z}_k^r) \right) \right\}$

Estimation du modèle

ETAPE 1

 $h^a(t_i, z_i^a) = h_0^a(t_i) exp(\beta^a z_i^a)$

Estimation des paramètres attendus $\hat{\beta}^a + \hat{Var}(\hat{\beta}^a)$

Prise en compte variabilité de l'attendu SIMULATIONS PARAMETRIQUES

Distribution normale multivariée

Simul 1 Simul 2 Simul 1000 $\widehat{\beta}_{2}^{a}$ $\widehat{\beta_{1000}^a}$

RÉ-ÉCHANTILLONAGE PAR BOOTSTRAP

Tirage avec remise 2^{ème} greffes (N = 566) Bootstrap 1 Bootstrap 2 Bootstrap 1000

ETAPE 2

 $h^r(t_i, z_i^r) = h_0^r(t_i) \exp(\beta^r z_i^r)$

Estimation des paramètres relatifs $\overline{\beta^r}$ et IC 95% (percentile 2,5% et 97,5%)

N = 566 N = 566

N = 566

Interprétation des paramètres du modèle

$$h^{o}(t_i,z_i)=h^{a}(t_i,z_i^a)h^{r}(t_i,z_i^r)$$

• Variables prises en compte uniquement chez les 2es greffes :

$\exp(\beta_1^r)$ = rapport de risques

$$\mathsf{RR}^{o}_{z_{1}=1/z_{1}=0} = \frac{h^{a}(t_{i}|z_{i}^{a}) \ h^{r}_{0}(t_{i}) \ exp\left(\beta_{1}^{r} + \sum_{j=2}^{p^{r}} \beta_{j}^{r} z_{i,j}^{r}\right)}{h^{a}(t_{i}|z_{i}^{a}) \ h^{r}_{0}(t_{i}) \ exp\left(\sum_{j=2}^{p^{r}} \beta_{j}^{r} z_{i,j}^{r}\right)} = exp(\beta_{1}^{r}) \ \ \forall \ t_{i}$$

Variables prises en compte chez les 1^{res} greffes et les 2^{es} greffes :

$\exp(\beta_1^r)$ = pondération de $\exp(\beta_1^a)$

$$\begin{split} \mathsf{RR}_{z_1=1/z_1=0}^o &= \frac{h_0^a(t_i) \; exp \big(\beta_1^a + \sum_{j=2}^{p^a} \beta_j^a z_{i,j}^a \big) \; h_0^r(t_i) \; exp \big(\beta_1^r + \sum_{j=2}^{p^r} \beta_j^r z_{i,j}^r \big)}{h_0^a(t_i) \; exp \big(\sum_{j=2}^{p^a} \beta_j^a z_{i,j}^a \big) \; h_0^r(t_i) \; exp \big(\sum_{j=2}^{p^r} \beta_j^r z_{i,j}^r \big)} \\ &= exp \big(\beta_1^a) \; exp \big(\beta_1^f \big) \; \; \forall \; t_i \end{split}$$

Modèle de Cox stratifié

Principe adapté à la problématique des 2es greffes

• Fonction de risque d'un individu de la strate k (k = a, r):

$$h_k(t_i|z_i) = h_{k,0}(t_i) \exp(\beta z_i)$$

$$= h_{k,0}(t_i) \exp(\beta^a z_i^a + \beta^c z_i^c + \beta^d z_i^d \delta_{ir} + \beta^r z_i^r)$$

 Z_i^a

Variables spécifiques des 1^{res} greffes (0 si k = r)

 z_i^c et z_i^d

Variables communes Z_i^c = même effet z_{i}^{d} = effets différents δ_{ir} = 1 pour strate r

Variables spécifiques des 2es greffes

 z_i^l

$$(0 \text{ si } k = a)$$

Ainsi, on obtient:

- 1^{res} greffes: $h_a(t_i|z_i) = h_{a,0}(t_i) \exp(\beta^a z_i^a + \beta^c z_i^c)$
- 2es greffes: $h_r(t_i|z_i) = h_{r,0}(t_i) \exp(\beta^c z_i^c + \beta^d z_i^d + \beta^r z_i^r)$

Modèle de Cox stratifié

Interprétation des paramètres du modèle

1^{res} greffes: $h_a(t_i|z_i) = h_{a,0}(t_i) \exp(\beta^a z_i^a + \beta^c z_i^c)$ 2^{es} greffes : $h_r(t_i|z_i) = h_{r,0}(t_i) \exp(\beta^c z_i^c + \beta^d z_i^d + \beta^r z_i^r)$

Variables spécifiques d'un groupe

- $exp(\beta^a)$ = RR associé aux variables spécifiques des 1^{res} greffes
- $exp(\beta^r)$ = RR associé aux variables spécifiques des 2^{es} greffes

Variables communes (effets communs ou différents)

- $exp(\beta^c)$ = RR associé aux variables communes avec un effet commun (1^{res} et 2^{es} greffes)
- $exp(\beta^c) \times exp(\beta^d) = RR$ associé aux variables communes avec un effet différent (2es greffes)

Résultats du modèle de survie relative

Introduc

Méthode Survie relat

Survie relati Cox stratifié

Résultats

D:----

Référence

• $\exp(\beta^r)$ = rapport de risques \Leftrightarrow RR° = $\exp(\beta^r)$

	Modèle de Cox	Modèle de survie relative		
	chez les 1 ^{res} greffes	chez les 2es greffes		
	$RR = exp(\beta^a)$	$exp(\beta^r)$	[IC 95%]	p-value
Transplantation < 2005	1,33	0,97	[0,55-1,74]	0,9360
Receveur homme	1,17	0,61	[0,38-1,05]	0,0720
Receveur ≥ 55 ans	1,39	1,65	[1,01-2,72]	0,0480
Donneur \geq 55 ans	1,34	0,59	[0,33-0,99]	0,0440
Donneur homme	-	1,53	[1,03-2,48]	0,0320
Dialyse de $>$ 3 ans	-	1,92	[1,22-3,00]	< 0,0001
avant retransplantation				

■ = RR attendus estimés à partir du groupe contrôle des 1^{res} greffes

Résultats du modèle de survie relative

Introduc

Méthode Survie relat

oon blidli

Résultats

Discuss

Référence

• $\exp(\beta^r) = \text{pondération de } \exp(\beta^a) \Leftrightarrow RR^o = \exp(\beta^a) \exp(\beta^r)$

	Modèle de Cox	Modèle de survie relative		
	chez les 1 ^{res} greffes	chez les 2es greffes		
	$RR = exp(\beta^a)$	$exp(\beta^r)$	[IC 95%]	p-value
Transplantation < 2005	1,33	0,97	[0,55-1,74]	0,9360
Receveur homme	1,17	0,61	[0,38-1,05]	0,0720
Receveur ≥ 55 ans	1,39	1,65	[1,01-2,72]	0,0480
Donneur \geq 55 ans	1,34	0,59	[0,33-0,99]	0,0440
Donneur homme	-	1,53	[1,03-2,48]	0,0320
Dialyse de >3 ans	-	1,92	[1,22-3,00]	< 0,0001
avant retransplantation				

^{■ =} RR attendus estimés à partir du groupe contrôle des 1^{res} greffes

Résultats

Comparaison des résultats des deux approches

Modèle de survie relative à risques multiplicatifs

	Modèle de Cox	Modèle de survie relative		
	chez les 1 ^{res} greffes	chez les 2es greffes		
	RR	RR	[IC 95%]	p-value
Transplantation < 2005	1,33	0,97	[0,55-1,74]	0,9360
Receveur homme	1,17	0,61	[0,38-1,05]	0,0720
Receveur \geq 55 ans	1,39	1,65	[1,01-2,72]	0,0480
Donneur \geq 55 ans	1,34	0,59	[0,33-0,99]	0,0440
Donneur homme	-	1,53	[1,03-2,48]	0,0320
Dialyse de $>$ 3 ans	-	1,92	[1,22-3,00]	< 0,0001

Modèle de Cox stratifié sur le rang de greffe

	Strate des 1 ^{res} greffes	Strate des 2es greffes		
	RR	RR	[IC 95%]	p-value
Transplantation < 2005	1,42	0,94	[0,54-1,64]	0,8295
Receveur homme	1,17	0,63	[0,40-1,02]	0,0581
Receveur \geq 55 ans	1,36	1,60	[0,95-2,72]	0,0785
Donneur \geq 55 ans	1,36	0,60	[0,35-1,05]	0,0725
Donneur homme	-	1,51	[0,97-2,36]	0,0674
Dialyse de >3 ans	-	1,99	[1,29-3,07]	0,0019

Apports des modèles utilisés

Introduc

Méthode Survie relat Cox stratifié

Résulta

Discussion

- Ces différences d'effets de l'âge du receveur et de l'âge du donneur entre 1^{res} et 2^{es} greffes sont montrées pour la première fois
- Deux approches intéressantes pour comparer l'effet des facteurs entre deux groupes avec prise en compte de variables spécifiques Trébern-Launay et al. (BMC med res method, 2013) [3]

Utilisation en pratique

- Rôle commun, différent ou spécifique de chaque variable connu
- La partie attendue répond aux exigences d'un modèle de Cox
 - Préférer le modèle de Cox stratifié
- Pas d'hypothèse a priori sur le rôle de chaque variable
- La partie attendue ne répond pas à un modèle de Cox
 - Préférer le modèle de survie relative à risques multiplicatifs

Références

Références

K Trébern-Launay, Y Foucher, M Giral, C Legendre, H Kreis, M Kessler, M Ladrière, N Kamar, L Rostaing, V Garrigue, G Mourad, E Morelon, JP Soulillou, and J Dantal.

Poor long-term outcome in second kidney transplantation : A delayed event. PLoS ONE, 7(10) :e47915, 10 2012.

PK Andersen and M Vaeth.

Simple parametric and nonparametric models for excess and relative mortality.

Biometrics, pages 523–535, 1989.

K Trébern-Launay, M Giral, J Dantal, and Y Foucher.

Comparison of the risk factors effects between two populations: two alternative approaches illustrated by the analysis of first and second kidney transplant recipients.

BMC medical research methodology, 13(1):1–9, 2013.