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Context & Motivation

• Medical researchers hope to improve patient management
using earlier diagnoses

• Statisticians can help by �tting prediction models

• The making of so-called "dynamic" predictions has recently
received a lot of attention

• In order to be useful for medical practice, predictions should
be "accurate"

How should we evaluate dynamic prediction accuracy?
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Data & Clinical goal

I Data:

DIVAT cohort data
of kidney transplant recipients
(subsample, n = 4, 119)

I Clinical goal:

• Dynamic prediction of risk of kidney
graft failure (death or return to dialysis)

• Using repeated measurements of
serum creatinine
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DIVAT data sample (n=4,119)

• French cohort

• Adult recipients

• Transplanted after 2000

• Creatinine measured every year

• 6 centers

(www.divat.fr)
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Statistical challenges discussed

How to evaluate and/or compare dynamic predictions?

I Using concepts of:

• Discrimination

• Calibration

I Accounting for:

• Dynamic setting

• Censoring issue
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Basic idea & concepts for evaluating predictions

Basic idea: comparing predictions and observations

(simple!)

Concepts:

I Discrimination:
A model has high discriminative power if the range of predicted risks is
wide and subjects with low (high) predicted risk are more (less) likely to
experience the event.

I Calibration:

A model is calibrated if we can expect that x subjects out of 100

experience the event among all subjects that receive a predicted risk

of x% (�weak� de�nition).
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Dynamic prediction

• s: Landmark time at which predictions are made (varies)

• t: prediction horizon (�xed)
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Dynamic prediction
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Right censoring issue

Landmark time s
(when predictions are made)

Time s + t
(end of prediction window)

time

: uncensored

: censored

For subject i censored within (s, s + t] the status

Di (s, t) = 11{event occurs in (s, s + t]}

is unknown.
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Notations for population parameters

I Indicator of event in (s, s + t]:

Di (s, t) = 11{s < Ti ≤ s + t}

where Ti is the time-to-event.

I Dynamic predictions:

πi (s, t)

= P̂ξ̂

(
Di (s, t) = 1

∣∣∣Ti > s,Yi (s),Xi

)
• ξ̂: previously estimated parameters (from independent training data)

• Yi (s): marker measurements observed before time s

• Xi : baseline covariates
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Predictive accuracy

How close are the predicted risks πi (s, t) to the �true underlying�
risk P

(
event occurs in (s,s+t]

∣∣information at s
)
?

I Prediction Error:

PEπ(s, t) = E
[{

D(s, t)− π(s, t)
}2∣∣∣T > s

]

• the lower the better

• PE ≈ Bias2 + Variance

• evaluates both Calibration and Discrimination

• depends on P
(
event occurs in (s,s+t]

∣∣at risk at s
)

• often called "Expected Brier Score"
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How does the PE relate to calibration and

discrimination?

PEπ(s, t) =E
[{

D(s, t)− π(s, t)
}2∣∣∣T > s

]
E
[{

D(s, t)+ E
[
D(s, t)

∣∣Hπ(s)
]︸ ︷︷ ︸

�true underlying� risk

−π(s, t)
∣∣∣T > s

]

Hπ(s) = {X π(s),T > s} denotes the subject-speci�c history at
time s.

I the more discriminating Hπ(s) the smaller Var
{
D(s, t)

∣∣Hπ(s)
}

I E
[
D(s, t)

∣∣Hπ(s)
]
− π(s, t) ≡ 0 de�nes "strong" calibration.
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+ E
[{

E
[
D(s, t)

∣∣Hπ(s)
]
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︸ ︷︷ ︸
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R2
π-type criterion

I Benchmark PE0

The best "null" prediction tool, which gives the same (marginal)
predicted risk

S(s + t|s) = E
[
D(s, t)

∣∣H0(s)
]
, H0(s) = {T > s}

to all subjects leads to

PE0(s, t) = Var{D(s, t)|T > s} = S(s + t|s)
{
1− S(s + t|s)

}
.

I Simple idea

R2
π(s, t) = 1− PEπ(s, t)

PE0(s, t)
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Why bother?

I R2
π(s, t) aims to circumvent the di�cult interpretation of:

• the scale on which PE (s, t) is measured

• interpretation for trend of PE (s, t) vs s

I Because the meaning of the scale on which PE(s,t) is
measured changes with s, an increasing/decreasing trend can be
due to changes in:

• the quality of the predictions

and/or • the at risk population
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and/or • the at risk population
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Changes in the quality of the predictions

"Essentially, all models are wrong, but some
are useful.", G. Box

I The prediction model from which we have obtained the
predictions can be �more wrong� for some s than for some others.

• Calibration term of PE (s, t) changes with s

• We can work on it!
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Changes in the at risk population

An example:

• Patients with cardiovascular history (CV) all die early.

• Only those without CV remain at risk for late s.

• Then:

• the earlier s the more homogeneous the at risk population
• CV is useful for prediction for early s but useless for late s.

I The available information can be more informative for some s
than for some others.

• Discriminating term of PE (s, t) changes with s

• This is just how it is, there is nothing we can do!

(we can only work with the data we have)
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R2
π(s, t) interpretation

I Always true:
Measure of how the prediction tool π(s, t) performs compared to the

benchmark null prediction tool, which gives the same predicted risk to

all subjects (marginal risk).

I When predictions are calibrated (strongly):

R2
π(s, t) =

Var{π(s, t)|T > s}
Var{D(s, t)|T > s}

explained variation

= Corr2
{
D(s, t), π(s, t)

∣∣T > s
}

correlation

= E
{
π(s, t)

∣∣∣D(s, t) = 1,T > s
}

mean risk di�erence

− E
{
π(s, t)

∣∣∣D(s, t) = 0,T > s
}
.

(after little algebra)
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Observations & IPCW PE estimator
I Observations (i.i.d.){(

T̃i ,∆i , πi (·, ·)
)
, i = 1, . . . , n

}
where T̃i = Ti ∧ Ci , ∆i = 11{Ti ≤ Ci}

I Indicator of �observed event occurrence� in (s, s + t]:

D̃i (s, t) = 11{s < T̃i ≤ s + t,∆i = 1} =


1 : event occurred

0 : event did not occur

or censored obs.

I Inverse Probability of Censoring Weighting (IPCW) estimator:

P̂Eπ(s, t) =
1

n

n∑
i=1

Ŵi (s, t)

{
D̃i (s, t)− πi (s, t)

}
2

and

R̂2

π(s, t) = 1− P̂Eπ(s, t)

P̂E 0(s, t)
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Inverse Probability of Censoring Weights

Ŵi (s, t) =

11{s < T̃i ≤ s + t}∆i

Ĝ (T̃i |s)

+

11{T̃i > s + t}
Ĝ (s + t|s)

+

0

with Ĝ(u|s) the Kaplan-Meier estimator of P(C > u|C > s).

Landmark time s Time s + t

time

: uncensored

: censored
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Ĝ (T̃i |s)
+

11{T̃i > s + t}
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Asymptotic i.i.d. representation

Lemma: Assume that the censoring time C is independent of
(T , η, π(·, ·)) and let θ denote either PEπ, R

2
π or a di�erence in PE

or R2
π, then

√
n
(
θ̂(s, t)− θ(s, t)

)
=

1√
n

n∑
i=1

IFθ(T̃i ,∆i , πi (s, t), s, t) + op (1)

where IFθ(T̃i ,∆i , πi (s, t), s, t) being :

I zero-mean i.i.d. terms

I easy to estimate (using Nelson-Aalen & Kaplan-Meier)
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Pointwise con�dence interval (�xed s)

• Asymptotic normality:

√
n
(
θ̂(s, t)− θ(s, t)

)
D−→ N

(
0, σ2s,t

)
• 95% con�dence interval:{

θ̂(s, t)± z1−α/2
σ̂s,t√
n

}

where z1−α/2 is the 1− α/2 quantile of N (0, 1).

• Variance estimator:

σ̂2s,t =
1

n

n∑
i=1

{
ÎFθ(T̃i ,∆i , πi (s, t), s, t)

}2
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Simultaneous con�dence band over s ∈ S

{
θ̂(s, t)± q̂

(S,t)
1−α

σ̂s,t√
n

}
, s ∈ S

Computation of q̂
(S,t)
1−α by the simulation algorithm (≈ Wild Bootstrap):

1 For b = 1, . . . ,B, say B = 4000, do:

1 Generate {ωb
1 , . . . , ω

b
n} from n i.i.d. N (0, 1).

2 Using the plug-in estimator ÎFθ(·), compute:

Υb = sup
s∈S

∣∣∣∣∣
∣∣∣∣∣

2 Compute q̂
(S,t)
1−α as the 100(1− α)th percentile of

{
Υ1, . . . ,ΥB

}
(Conditional multiplier central limit theorem)
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Υb = sup
s∈S

∣∣∣∣∣
∣∣∣∣∣

2 Compute q̂
(S,t)
1−α as the 100(1− α)th percentile of

{
Υ1, . . . ,ΥB

}

(Conditional multiplier central limit theorem)

Slide 20/29 � P Blanche et al.



un iver s i ty of copenhagen department of b io stat i s t i c s

Simultaneous con�dence band over s ∈ S

{
θ̂(s, t)± q̂

(S,t)
1−α

σ̂s,t√
n

}
, s ∈ S

Computation of q̂
(S,t)
1−α by the simulation algorithm (≈ Wild Bootstrap):

1 For b = 1, . . . ,B, say B = 4000, do:

1 Generate {ωb
1 , . . . , ω

b
n} from n i.i.d. N (0, 1).

2 Using the plug-in estimator ÎFθ(·), compute:
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Υb = sup
s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

ωb
i
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DIVAT sample

• Population based study of kidney recipients (n=4,119)

• Split the data into training (2/3) and validation (1/3) samples

• T : time from 1-year after transplantation to graft failure which is:

Death Return to dialysis

OR

• Censoring due to:

• delayed entries: 2000-2013
• end of follow-up: 2014

• Baseline covariates: age, sex, cardiovascular history

• Longitudinal biomarker (yearly): serum creatinine
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Descriptive statistics & censoring issue

• s ∈ S = {0, 0.5, . . . , 5}
• t = 5 years

s=0 s=1 s=2 s=3 s=4 s=5

Censored in (s,s+5]
Known as event−free at s+5
Observed failure in (s,s+5]

landmark time (year)

N
o.

 o
f s

ub
je

ct
s

0
20

0
60

0
10

00
14

00
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Joint model

I Longitudinal

log
[
Yi (tij)

]
= (β0 + b0i ) + β0,ageAGEi + β0,sexSEXi

+
(
β1 + b1i + β1,ageAGEi

)
× tij + εij

= mi (t) + εij

I Survival (hazard)

hi (t) = h0(t) exp

{
γageAGEi + γCVCVi

+ α1mi (t) + α2
dmi (t)

dt

}

(�tted using package JM)
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Joint model
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R2
π(s, t) vs s (t=5 years)
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Comparing R2
π(s, t) vs s for di�erent π(s, t)
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Comparing R2
π(s, t) vs s for di�erent π(s, t)

Landmark time s (years)

R
π2 (s

, t
)

0 1 2 3 4 5

0 
%

10
 %

20
 %

30
 %

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
● ●

●

●
●●

●

●

●
●

●

● ●

● ●

●

T ~ Age + CV + m(t) + m'(t) (JM)
T ~ Age + CV + Y(t=0)
T ~ Age + CV

Slide 25/29 � P Blanche et al.



un iver s i ty of copenhagen department of b io stat i s t i c s

Comparing R2
π(s, t) vs s for di�erent π(s, t)
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Comparing R2
π(s, t) vs s for di�erent π(s, t)
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Comparing R2
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Calibration plot (example for s = 3 years)
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Area under the ROC(s, t) curve vs s
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Summing up

I R2-type curve

• summarizes calibration and discriminating simultaneously

• has an understandable trend

I Simple model free inference

• predictions can be obtained from any model

• we do not assume any model to hold

• allows fair comparisons of di�erent predictions

I The method accounts for:

• Censoring

• Dynamic setting (the at risk population changes)
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Discussion

I The strong calibration assumption allows di�erent interesting
interpretations:

• Explained variation
• Correlation
• Mean risk di�erence

I Unfortunately

• the strong calibration cannot be checked
(curse of dimensionality)

I However
• weak and strong de�nitions are closely related:

• strong calibration implies weak calibration
• weak calibration can �often� be seen as a reasonable

approximation of strong calibration in practice

• weak calibration can be assessed (plots)

Thank you for your attention!
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