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Context & Motivation

e Medical researchers hope to improve patient management
using earlier diagnoses

e Statisticians can help by fitting prediction models

e The making of so-called "dynamic" predictions has recently
received a lot of attention

e In order to be useful for medical practice, predictions should
be "accurate"

How should we evaluate dynamic prediction accuracy?
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Data & Clinical goal

» Data:

DIVAT cohort data
of kidney transplant recipients
(subsample, n = 4,119)

» Clinical goal:

e Dynamic prediction of risk of kidney
graft failure (death or return to dialysis)

e Using repeated measurements of
serum creatinine

Slide 2/29 — P Blanche et al.



UNIVERSITY OF COPENHAGEN DEPARTMENT OF BIOSTATISTICS

DIVAT data sample (n=4,119)

French cohort

Adult recipients
Transplanted after 2000

Creatinine measured every year

(www.divat.fr)

[ ]
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DIVAT data sample (n=4,119)

French cohort

Adult recipients
Transplanted after 2000
Creatinine measured every year

e 6 centers

(www.divat.fr)

[ ]
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Statistical challenges discussed

How to evaluate and/or compare dynamic predictions?

» Using concepts of:
e Discrimination

e Calibration

» Accounting for:
e Dynamic setting

e Censoring issue
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Basic idea & concepts for evaluating predictions

Basic idea: comparing predictions and observations
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Basic idea: comparing predictions and observations (simple!)
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Basic idea & concepts for evaluating predictions

Basic idea: comparing predictions and observations (simple!)

Concepts:

» Discrimination:

» Calibration:
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Basic idea & concepts for evaluating predictions

Basic idea: comparing predictions and observations (simple!)

Concepts:

» Discrimination:

A model has high discriminative power if the range of predicted risks is
wide and subjects with low (high) predicted risk are more (less) likely to
experience the event.

» Calibration:
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Basic idea & concepts for evaluating predictions

Basic idea: comparing predictions and observations (simple!)

Concepts:

» Discrimination:

A model has high discriminative power if the range of predicted risks is
wide and subjects with low (high) predicted risk are more (less) likely to
experience the event.

» Calibration:

A model is calibrated if we can expect that x subjects out of 100
experience the event among all subjects that receive a predicted risk
of x% (“weak” definition).
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Dynamic prediction
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Dynamic prediction
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Dynamic prediction

e s: Landmark time at which predictions are made (varies)
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Dynamic prediction
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Dynamic prediction

e s: Landmark time at which predictions are made (varies)
e t: prediction horizon (fixed)

300
I}

250
L

Creatinine (mol/L)
200
Il

150
L

x !
Landmark time "s";
Horizon "t"

0 s=4 ‘years S+t = é years ‘
follow-up time (years) @

Slide 6/29 — P Blanche et al.

100
L




UNIVERSITY OF COPENHAGEN

Dynamic prediction

e s: Landmark time at which predictions are made (varies)

e t: prediction horizon (fixed)
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Right censoring issue

Landmark time s Time s+t
(when predictions are made) (end of prediction window)

time‘

D;(s, t) = {event occurs in (s,s + t|}
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Right censoring issue

X uncensored

Landmark time s Time s+t
(when predictions are made) (end of prediction window)

time‘

D;(s, t) = {event occurs in (s,s + t|}
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Right censoring issue

X uncensored
QO : censored

Landmark time s Time s+t
(when predictions are made) (end of prediction window)

time‘

D;(s, t) = {event occurs in (s,s + t|}
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Right censoring issue

X uncensored
QO : censored

Landmark time s Time s+t
(when predictions are made) (end of prediction window)
—0 l

time‘

For subject i censored within (s,s + t] the status

D;(s, t) = {event occurs in (s,s + t|}

is unknown. @
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Notations for population parameters

» Indicator of event in (s,s + t]:
Di(s,t) =1{s < T; < s+ t}

where T; is the time-to-event.
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Notations for population parameters

» Indicator of event in (s,s + t]:

Di(s,t) =1{s < T; < s+ t}
where T; is the time-to-event.
» Dynamic predictions:

7T,'(S, t)
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Notations for population parameters

» Indicator of event in (s,s + t]:
Di(s,t) =1{s < T; < s+ t}

where T; is the time-to-event.
» Dynamic predictions:

7T,'(S, t):@g( )

~

e &: previously estimated parameters (from independent training data)
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Notations for population parameters

» Indicator of event in (s,s + t]:
Di(s,t) =1{s < T; < s+ t}

where T; is the time-to-event.
» Dynamic predictions:

(s, t) = @E(D;(s, t) = 1‘ )

~

e &: previously estimated parameters (from independent training data)
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Notations for population parameters

» Indicator of event in (s,s + t]:
Di(s,t) =1{s < T; < s+ t}
where T; is the time-to-event.
» Dynamic predictions:
(s, t) = @E(D;(s, t) = 1‘ Ti > s, Di(s), )

e &: previously estimated parameters (from independent training data)

e Yi(s): marker measurements observed before time s
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Notations for population parameters

» Indicator of event in (s,s + t]:
Di(s,t) =1{s < T; < s+ t}

where T; is the time-to-event.

» Dynamic predictions:

(s, t) = @E(D;(s, t) = 1‘ Ti > s, Di(s), x,-)

e &: previously estimated parameters (from independent training data)

e Yi(s): marker measurements observed before time s

e X;: baseline covariates
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Predictive accuracy

How close are the predicted risks mi(s, t) to the “true underlying”
risk P (event occurs in (s,s+t]| information at s)?
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Predictive accuracy

How close are the predicted risks mi(s, t) to the “true underlying”
risk P (event occurs in (s,s+t]| information at s)?

» Prediction Error:

PE,(s,t) =E {{D(s, t) — (s, t)}2‘ T> s]
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Predictive accuracy

How close are the predicted risks mi(s, t) to the “true underlying”
risk P (event occurs in (s,s+t]| information at s)?

» Prediction Error:

PE,(s,t) =E {{D(s, t) — (s, t)}2‘ T> s]

the lower the better
PE ~ Bias? + Variance

evaluates both Calibration and Discrimination

depends on PP(event occurs in (s,s+t]’at risk at s)
often called "Expected Brier Score" %

Slide 9/29 — P Blanche et al.



UNIVERSITY OF COPENHAGEN DEPARTMENT OF BIOSTATISTICS

How does the PE relate to calibration and
discrimination?

PE,(s, t) :]EHD(S, t) — (s, t)}z‘ T> s]
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How does the PE relate to calibration and
discrimination?

PE.(s, t) :IEHD(S, t) = E[D(s, t)| H"(s)]

+ E[D(s, t)|H"(s)] — (s, t)}z‘T > o]
P61 G

“true underlying” risk
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How does the PE relate to calibration and
discrimination?

PE,(s, t) :E[{D(s, t) — E[D(s, t)| 1" (s)] }2]T > s]

+E[{ E[D(s, 0)[#7(s)] (s, t)}2‘ 7>

“true underlying” risk

H™(s) = {X"(s), T > s} denotes the subject-specific history at
time s.
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How does the PE relate to calibration and
discrimination?

PE.(s, t) :E[{D(s, t) — E[D(s, t)| 1" (s)] }2‘ T> s]

Inseparability

+E[{E[D(s, ) [#7(s)] — (s, t)}Q}T > o]

Bias/Calibration

H™(s) = {X"(s), T > s} denotes the subject-specific history at
time s.
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How does the PE relate to calibration and
discrimination?

PE. (s, t) :]E[Var{D(s, t)]H”(s)}‘T > s]

Discrimination

+ E[{E[D(s, 8|7 (s)] — (s, t)}Z)T > s]

Calibration

H™(s) = {X"(s), T > s} denotes the subject-specific history at
time s.
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How does the PE relate to calibration and
discrimination?

PE, (s, t) :]E[Var{D(s, t)]H”(s)}‘T > s]

Discrimination

+ E[{E[D(s, 8|7 (s)] — (s, t)}Z)T > s]

Calibration

H™(s) = {X"(s), T > s} denotes the subject-specific history at
time s.

» the more discriminating %™ (s) the smaller Var{D(s, t)|H"(s)}
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How does the PE relate to calibration and
discrimination?

PE, (s, t) :]E[Var{D(s, t)]H”(s)}‘T > s]

Discrimination

+ E[{E[D(s, 8|7 (s)] — (s, t)}Z)T > s]

Calibration

H™(s) = {X"(s), T > s} denotes the subject-specific history at
time s.

» the more discriminating %™ (s) the smaller Var{D(s, t)|H"(s)}
> E[D(s, t)|H"(s)] — m(s, t) = 0 defines "strong" calibration. @
[
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How does the PE relate to calibration and
discrimination?

PE.(s,t) :E[Var{D(s, t)"H"(s)}‘ T> s}

Does NOT depend on ~(s,t)
+E[{E[D(s, ) [17(5)] — (s, t)}2’ 7>

Depends on =(s,t)

H™(s) = {X"(s), T > s} denotes the subject-specific history at
time s.

» the more discriminating %™ (s) the smaller Var{D(s, t)|H"(s)}
> E[D(s, t)|H"(s)] — m(s, t) = 0 defines "strong" calibration. @
[
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R2-type criterion

» Benchmark PE,

The best "null" prediction tool, which gives the same (marginal)
predicted risk

S(s+tls) = E[D(s, t)|H’(s)], Ho(s) = {T > s}

to all subjects leads to

PEo(s, t) = Var{D(s, t)| T > s} = S(s + r|s){1 —S(s+ t|s)}.
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R2-type criterion

» Benchmark PE,

The best "null" prediction tool, which gives the same (marginal)
predicted risk

S(s+tls) = E[D(s, t)|H’(s)], Ho(s) = {T > s}

to all subjects leads to

PEo(s, t) = Var{D(s, t)| T > s} = S(s + r|s){1 —S(s+ t|s)}.

» Simple idea

PE.(s,t)

R2(s. t) =1— 7\ t)
w(s 1) PEo(s, t)
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Why bother?

» R2%(s, t) aims to circumvent the difficult interpretation of:

e the scale on which PE(s, t) is measured

e interpretation for trend of PE(s,t) vs s
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Why bother?

» R2%(s, t) aims to circumvent the difficult interpretation of:

e the scale on which PE(s, t) is measured

e interpretation for trend of PE(s,t) vs s

» Because the meaning of the scale on which PE(s,t) is
measured changes with s, an increasing/decreasing trend can be
due to changes in:

e the quality of the predictions
and/or e the at risk population
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Changes in the quality of the predictions

"Essentially, all models are wrong, but some
are useful ", G. Box
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Changes in the quality of the predictions

"Essentially, all models are wrong, but some
are useful ", G. Box

» The prediction model from which we have obtained the
predictions can be "more wrong" for some s than for some others.

o Calibration term of PE(s,t) changes with s
e We can work on it!
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Changes in the at risk population

An example:
® Patients with cardiovascular history (CV) all die early.
e Only those without CV remain at risk for late s.
e Then:

e the earlier s the more homogeneous the at risk population
o CV is useful for prediction for early s but useless for late s.
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Changes in the at risk population

An example:
® Patients with cardiovascular history (CV) all die early.
e Only those without CV remain at risk for late s.
e Then:

e the earlier s the more homogeneous the at risk population
o CV is useful for prediction for early s but useless for late s.

» The available information can be more informative for some s
than for some others.

e Discriminating term of PE(s,t) changes with s
e This is just how it is, there is nothing we can do!

(we can only work with the data we have) %
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R2(s, t) interpretation

» Always true:
Measure of how the prediction tool 7 (s, t) performs compared to the
benchmark null prediction tool, which gives the same predicted risk to

all subjects (marginal risk).
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R2(s, t) interpretation

» Always true:

Measure of how the prediction tool 7 (s, t) performs compared to the
benchmark null prediction tool, which gives the same predicted risk to
all subjects (marginal risk).

» When predictions are calibrated (strongly):

V T
R%(s,t) = ar{m(s, ) T > s} explained variation

~ Var{D(s,t)|T > s}

(after little algebra) %
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R2(s, t) interpretation

» Always true:

Measure of how the prediction tool 7 (s, t) performs compared to the
benchmark null prediction tool, which gives the same predicted risk to
all subjects (marginal risk).

» When predictions are calibrated (strongly):

V T
R%(s,t) = ar{m(s, ) T > s} explained variation

~ Var{D(s,t)|T > s}

= Corr®{D(s, t), (s, t)| T > s} correlation

(after little algebra) %
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R2(s, t) interpretation

» Always true:

Measure of how the prediction tool 7 (s, t) performs compared to the
benchmark null prediction tool, which gives the same predicted risk to
all subjects (marginal risk).

» When predictions are calibrated (strongly):

Var{n(s, t)|T > s} . .
2 — ’ I
R:(s,t) Var{D(s, 0)[T > s} explained variation

= Corr®{D(s, t), (s, t)| T > s} correlation

= E{TI‘(& t)‘D(s, t)y=1T > s} mean risk difference

- E{ﬂ(s, t)’D(s, t)=0,T > s}.

(after little algebra) %
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Observations & IPCW PE estimator

» Observations (i.i.d.)

{(?,-,A,-,m(.,.)),i: 1,...,n} where T = TiA G, A = 1{T; < G}
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Observations & IPCW PE estimator

» Observations (i.i.d.)

{(?,-,A,-,m(.,.)),i: 1,...,n} where T = TiA G, A = 1{T; < G}

» Indicator of “observed event occurrence” in (s,s + t]:

_ _ 1 : event occurred
Di(s,t) =1{s< T; <s+t,Aij=1} =< 0 : eventdid not occur
or censored obs.
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Observations & IPCW PE estimator

» Observations (i.i.d.)

{(?,-,A,-,m(.,.)),i: 1,...,n} where T = TiA G, A = 1{T; < G}

» Indicator of “observed event occurrence” in (s,s + t]:

_ _ 1 : event occurred
Di(s,t) =1{s< T; <s+t,Aij=1} =< 0 : eventdid not occur
or censored obs.

» Inverse Probability of Censoring Weighting (IPCW) estimator:

[5E7r(5, t) = %i {5,-(5, t) — mi(s, t)}z

i=
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Observations & IPCW PE estimator

» Observations (i.i.d.)

{(?,-,A,-,m(.,.)),i: 1,...,n} where T = TiA G, A = 1{T; < G}

» Indicator of “observed event occurrence” in (s,s + t]:

_ _ 1 : event occurred
Di(s,t) =1{s< T; <s+t,Aij=1} =< 0 : eventdid not occur
or censored obs.

» Inverse Probability of Censoring Weighting (IPCW) estimator:

PE.(s,t) = % Z Wi(s, 1) {Bi(s, 1)~ mi(s, t)}2
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Observations & IPCW PE estimator

» Observations (i.i.d.)

{(?,-,A,-,m(.,.)),i: 1,...,n} where T = TiA G, A = 1{T; < G}

» Indicator of “observed event occurrence” in (s,s + t]:
1 : event occurred

Di(s,t) =T1{s< T; <s+t,A;=1}={ 0 : event did not occur
or censored obs.

» Inverse Probability of Censoring Weighting (IPCW) estimator:

PE.(s,t) = % Z Wi(s, 1) {Bi(s, 1)~ mi(s, t)}2

and e
PE (s, t)

Ri(st)=1- =">— @
PE()(S7 t)

Slide 16/29 — P Blanche et al.



UNIVERSITY OF COPENHAGEN DEPARTMENT OF BIOSTATISTICS

Inverse Probability of Censoring Weights

Wi(s, t) = + +

with G(uls) the Kaplan-Meier estimator of P(C > u|C > s).

Landmark time s Time s+t

time‘
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Inverse Probability of Censoring Weights

C1{s< T <s+t}A;

Wi(s, t) = 2 +
G(Tils)
with G(uls) the Kaplan-Meier estimator of P(C > u|C > s).
Landmark time s Times+t X uncensored

QO : censored

X

time‘
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Inverse Probability of Censoring Weights

_ 1 Ti<s+tln;,  1{T; t
Wils, 1) = {s<Ti<s+t} +{ >5+}+

=

G(Tils) G(s + t]s)

with G(uls) the Kaplan-Meier estimator of P(C > u|C > s).

Landmark time s Time s+t

X

X

time‘
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Inverse Probability of Censoring Weights

]ls<T<s+tA 11T> +t
{ 18 MTi>s+e) o

Wi(s.1) = a(T1s) C(s+ t]s)

with G(uls) the Kaplan-Meier estimator of P(C > u|C > s).

Landmark time s Time s+t

—— o0

X

X

time‘
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Asymptotic i.i.d. representation

Lemma: Assume that the censoring time C is independent of
(T,n,m(-,-)) and let 6 denote either PE,, R2 or a difference in PE
or R2, then

Vi ((s.t) ~ 0(s. 1)) = % S IFo(Tis 837, ),5,6) + 0, (1)

where IF9(7~',-,A,~,7T,'(S, t),s,t) being :
» zero-mean i.i.d. terms

» easy to estimate (using Nelson-Aalen & Kaplan-Meier)
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Pointwise confidence interval (fixed s)
e Asymptotic normality:

\/5(5(5, t) — 6(s, t)) 2N (0,02,)

e 95% confidence interval:

~ O
{0(57 t) + Zla/27’,:}

where z;_ 5 is the 1 — /2 quantile of N/(0,1).

e Variance estimator:

n

Ez,t = % Z {ﬂ\:a(f, Ahﬂ"-(s’ t),S, t)}2

4
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Simultaneous confidence band over s € S

{e( )iqﬁS;\[} seS
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Simultaneous confidence band over s € S

{e( )iqﬁS;I} seS

Computation of 2741‘5; by the simulation algorithm

® For b=1,...,B, say B=4000, do:
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Simultaneous confidence band over s € S

{e( )iagsgf} ses

St
@

Computation of 27415 by the simulation algorithm (= Wild Bootstrap):

® For b=1,...,B, say B=4000, do:

(Conditional multiplier central limit theorem) @

Slide 20/29 — P Blanche et al.



UNIVERSITY OF COPENHAGEN DEPARTMENT OF BIOSTATISTICS

Simultaneous confidence band over s € S

{e( )iqﬁsgf} ses

St
@

Computation of 27415 by the simulation algorithm (= Wild Bootstrap):

® For b=1,...,B, say B=4000, do:
@ Generate {w?,...,wk} from niid. N(0,1).

(Conditional multiplier central limit theorem) @
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Simultaneous confidence band over s € S

{fenao®2), ses

Computation of g g\ by the simulation algorithm (=~ Wild Bootstrap):

@® For b=1,...,B, say B=14000, do:

@ Generate {w?,...,wk} from ni.id. N(0,1).
® Using the plug-in estimator IFg(-), compute:

1 & (Fo(Ti, A mis, t), s, t)
NG >

Os.t

(Conditional multiplier central limit theorem) %
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Simultaneous confidence band over s € S

{fenao®2), ses

Computation of g g\ by the simulation algorithm (=~ Wild Bootstrap):

@® For b=1,...,B, say B=14000, do:

@ Generate {w?,...,wk} from ni.id. N(0,1).
® Using the plug-in estimator IFg(-), compute:

1 & LIFe(Ti, A mi(s, )5, 1)
EBS8

=
Os.t

(Conditional multiplier central limit theorem) %
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Simultaneous confidence band over s € S

{fenao®2), ses

Computation of g g\ by the simulation algorithm (=~ Wild Bootstrap):

@® For b=1,...,B, say B=14000, do:

@ Generate {w?,...,wk} from ni.id. N(0,1).
® Using the plug-in estimator IFg(-), compute:

_Sup fz blFQ(‘I—,,A,,ﬂ',(S t) S, t)

seES Us t

(Conditional multiplier central limit theorem) %
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Simultaneous confidence band over s € S

{fenao®2), ses

Computation of g g\ by the simulation algorithm (=~ Wild Bootstrap):

@® For b=1,...,B, say B=14000, do:

@ Generate {w?,...,wk} from ni.id. N(0,1).
® Using the plug-in estimator IFg(-), compute:

_Sup fz blFQ(‘I—,,A,,ﬂ',(S t) S, t)

seS Us t

® Compute §{°"? as the 100(1 — a)th percentile of {r:,...,T%}

(Conditional multiplier central limit theorem) @
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DIVAT sample

e Population based study of kidney recipients (n=4,119)
e Split the data into training (2/3) and validation (1/3) samples
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DIVAT sample

e Population based study of kidney recipients (n=4,119)
e Split the data into training (2/3) and validation (1/3) samples

e T: time from 1-year after transplantation to graft failure which is:

Death Return to dialysis

——

OR
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DIVAT sample

e Population based study of kidney recipients (n=4,119)
e Split the data into training (2/3) and validation (1/3) samples

e T: time from 1-year after transplantation to graft failure which is:
Death Return to dialysis

OR

e Censoring due to:

e delayed entries: 2000-2013
e end of follow-up: 2014

e Baseline covariates: age, sex, cardiovascular history

e Longitudinal biomarker (yearly): serum creatinine @

Slide 21/29 — P Blanche et al.



UNIVERSITY OF COPENHAGEN

Descriptive statistics & censoring issue

e scS5={0,05,...,5}
e t =5 years

1400

1000
|

No. of subjects
600
|

0 200
|

O Censored in (s,5+5]
B Known as event-free at s+5
B Observed failure in (s,s+5]

L

s=0 s=1 = = = =

landmark time (year)

DEPARTMENT OF BIOSTATISTICS
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Joint model

» Longitudinal

/Og[Y,-(t,'j)] = (50 + bOi) + ﬂO,ageAGEi + ﬂO,sexSExi

+ (B1 4 bii + P1,2geAGE;) X tj + €
=m;(t) +¢j

(fitted using @ package JM) @
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Joint model

» Longitudinal

/Og[yi(tij):| = (50 + bOi) + ﬂO,ageAGEi + ﬂO,sexSExi

+ (B1 4 bii + P1,2geAGE;) X tj + €
= m,-(t) + €jj

» Survival (hazard)

hi(t) = ho(t)exp {'YageAGEi + vcvCV;

)

+ alm,-(t) + oo

(fitted using @ package JM) @
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R2(s,t) vs s (t=5 years)

- - 95% pointwise CI
95% simultaneous CB

30 %

)
20 %

10 %

0%
1
\
’

Landmark time s (years) @
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Comparing R2(s, t) vs s for different 7(s, t)

—— T~ Age +CV+m(t) +m'(t) (IM)

30 %

)
20 %

10 %

0%
|

Landmark time s (years) @
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Comparing R2(s, t) vs s for different 7(s, t)

—— T~ Age +CV+m(t) +m'(t) (IM)

30 %

— T~Age+CV

)
20 %

10 %

0%
|

Landmark time s (years) @
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Comparing R2(s, t) vs s for different 7(s, t)

© —— T ~Age +CV +m(t) + m'(t) IM)
o —— T~ Age +CV + Y(t=0)
@ — T~Age+CV
=8
¥ 8
<
2> -
-
X
o
T T T T T 1
0 1 2 3 4 5

Landmark time s (years) @
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Comparing R2(s, t) vs s for different 7(s, t)

—— T ~Age +CV +m(t) + m'(t) IM)
- —— T ~Age+CV +Y(t=0)

30 %

)
20 %

10 %

0%

Landmark time s (years) @
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Comparing R2(s, t) vs s for different 7(s, t)

20 %

’(s.t)

10 %

Difference in R
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Comparing R2(s, t) vs s for different 7(s, t)

20 %

’(s.t)

10 %

Difference in R
5%

0%

-5%

Landmark time s @
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Calibration plOt (example for s = 3 years)

°
8 -
B Predicted
O Observed
g
8
S 8+
™
]
3
[
2 o |
1 <
n
& 15(6)%
15(5)% 136)%
8(4)% 7% 9%
° - (0,10) (10,20) (20,30) (30 40)
(0:3.5] (35:5.3] (5.3:8] (8:10.4]

7%, 00,

42%

(9)%
266 2% 0%
217N % 1004
ﬂ ﬂ

(50,60) (60,70) (70,80) (80,90)  (90,100)
(13.1;16.5] (16522.3] (22.3333]  (33;55.1]  (55.1; 100]

Risk groups (quantile groups, in %)
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Area under the ROC(s, t) curve vs s

100%
|

—— T ~Age + CV +m(t) + m'(t) M)
— —— T ~Age+CV + Y(t=0)
— T~Age+CV

AUC,(s, 1)
80%
L

70%
|

60%
|
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L

Landmark time s (years) @
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Summing up

» R2-type curve
e summarizes calibration and discriminating simultaneously

e has an understandable trend

» Simple model free inference
e predictions can be obtained from any model
e we do not assume any model to hold

e allows fair comparisons of different predictions

» The method accounts for:
e Censoring

e Dynamic setting (the at risk population changes)
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Discussion

» The strong calibration assumption allows different interesting
interpretations:
e Explained variation
e Correlation
e Mean risk difference

» Unfortunately

e the strong calibration cannot be checked
(curse of dimensionality)

» However
e weak and strong definitions are closely related:

e strong calibration implies weak calibration
o weak calibration can “often” be seen as a reasonable
approximation of strong calibration in practice

e weak calibration can be assessed (plots)
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Discussion

» The strong calibration assumption allows different interesting
interpretations:
e Explained variation
e Correlation
e Mean risk difference

» Unfortunately

e the strong calibration cannot be checked
(curse of dimensionality)

» However
e weak and strong definitions are closely related:

e strong calibration implies weak calibration
o weak calibration can “often” be seen as a reasonable
approximation of strong calibration in practice

e weak calibration can be assessed (plots)

Thank you for your attention! %
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